Answer: 625 kj/mol
Explanation:
As shown below this expression gives the activation energy of the reverse reaction:
EA reverse reaction = EA forward reaction + | enthalpy change |
1) The activation energy, EA is the difference between the potential energies of the reactants and the transition state:
EA = energy of the transition state - energy of the reactants.
2) The activation energy of the forward reaction given is:
EA = energy of the transition state - energy of [ NO2(g) + CO(g) ] = 75 kj/mol
3) The negative enthalpy change - 250 kj / mol for the forward reaction means that the products are below in the potential energy diagram, and that the potential energy of the products, [NO(g) + CO2(g) ] is equal to 375 kj / mol - 250 kj / mol = 125 kj/mol
4) For the reverse reaction the reactants are [NO(g) + CO2(g)], and the transition state is the same than that for the forward reaction.
5) The difference of energy between the transition state and the potential energy of [NO(g) + CO2(g) ] will be the absolute value of the change of enthalpy plus the activation energy for the forward reaction:
EA reverse reaction = EA forward reaction + | enthalpy change |
EA reverse reaction = 375 kj / mol + |-250 kj/mol | = 375 kj/mol + 250 kj/mol = 625 kj/mol.
And that is the answer, 625 kj/mol
Answer:
Altogether for both models; two red jellybeans, two white jellybeans, two black jellybeans and six blue jellybeans.
<em>Note: Since no specific color was stated for oxygen atoms, the answer assigns blue colored jellybeans to represent oxygen atoms.J</em>
Explanation:
Sodium bicarbonate, NaHCO₃ is a compound composed of one atom of sodium, one atom of hydrogen, one atom of carbon and three atoms of oxygen.
Since red jellybeans represent sodium atoms, white jellybeans represent hydrogen atoms, black jellybeans represent carbon atoms and blue jellybeans represent oxygen atoms, each of the two students will require the following number of each jellybean for their model of sodium carbonate: One red jellybean, one white jellybean, one black jellybean and three blue jellybeans.
Altogether for both models; two red jellybeans, two white jellybeans, two black jellybeans and six blue jellybeans.
Answer:
Aluminium atoms = 4.13 *10^22 aluminium atoms
The correct answer is E
Explanation:
Step 1: Data given
Mass of Al2O3 = 3.50 grams
Molar mass of Al2O3 = 101.96 g/mol
Number of Avogadro = 6.022 * 10^23 /mol
Step 2: Calculate moles Al2O3
Moles Al2O3 = mass Al2O3 / molar mass Al2O3
Moles Al2O3 = 3.50 grams / 101.96 g/mol
Moles Al2O3 = 0.0343 moles
Step 3: Calculate moles Aluminium
In 1 mol Al2O3 we have 2 moles Al
in 0.0343 moles Al2O3 we have 2*0.0343 = 0.0686 moles Al
Step 4: Calculate aluminium atoms
Aluminium atoms = moles aluminium * Number of Avogadro
Aluminium atoms = 0.0686 * 6.022 * 10^23
Aluminium atoms = 4.13 *10^22 aluminium atoms
The correct answer is E
Answer is "B - 700,000".<span>
<span>Kinetic energy of a single particle (atom or molecule)<span> is directly proportional to its
temperature according to the following equation.</span></span>
KE = (3kT)/2
<span>Where </span>KE<span> is the
kinetic energy of a single atom/molecule (</span>J<span>), </span>k<span> is the Boltzmann
constant (</span>1.381 × 10</span>⁻²³ J/K<span>) and </span>T<span> is the temperature (</span>K<span>) </span><span>
When temperature increases, then the kinetic
energy increases.
<span>If kinetic
energy of atoms increases, then there will be more motions which create many
collisions.</span></span>
Answer:
127.0665 amu
Explanation:
Firstly, to answer the question correctly, we need to access the percentage compositions of the iodine and the contaminant iodine. We can do this by placing their individual masses over the total and multiplying by 100%.
We do this as follows. Since the mass of the contaminant iodine is 1.00070g, the mass of the 129I in that particular sample will be 12.3849 - 1.00070 = 11.3842g
The percentage abundances is as follows:
Synthetic radioisotope % = 1.0007/12.3849 * 100% = 8.1%
Since there are only two constituents, the percentage abundance of the 129I would be 100 - 8.1 = 91.9%
Now, we can use these percentages to get the apparent atomic mass. We get this by multiplying the percentage abundance’s by the atomic masses of both and adding together.
That is :
[8.1/100 * 128.9050] + [91.9/100 * 126.9045] = 10.441305 + 116.6252355 = 127.0665 amu