Answer:
The molar mass of the gas is 36.25 g/mol.
Explanation:
- To solve this problem, we can use the mathematical relation:
ν = 
Where, ν is the speed of light in a gas <em>(ν = 449 m/s)</em>,
R is the universal gas constant <em>(R = 8.314 J/mol.K)</em>,
T is the temperature of the gas in Kelvin <em>(T = 20 °C + 273 = 293 K)</em>,
M is the molar mass of the gas in <em>(Kg/mol)</em>.
ν = 
(449 m/s) = √ (3(8.314 J/mol.K) (293 K) / M,
<em>by squaring the two sides:</em>
(449 m/s)² = (3 (8.314 J/mol.K) (293 K)) / M,
∴ M = (3 (8.314 J/mol.K) (293 K) / (449 m/s)² = 7308.006 / 201601 = 0.03625 Kg/mol.
<em>∴ The molar mass of the gas is 36.25 g/mol.</em>
I believe the correct answer would be that t<span>he change in enthalpy can be found by adding the enthalpies of the individual thermochemical reactions of a chemical reaction.</span> In Hess' Law, enthalpy is independent of the mechanism of the reaction. The enthalpy should be the sum of all the changes in the reaction.
Answer:
Increase in pressure
Explanation:
The rise in temperature will increase the pressure of the gas.
Answer:The symbol for T2 should be smaller than for T1 because if volume increases, then temperature should decrease.
Explanation:
Explanation:
The given data is as follows.
= 30.0 sec,
= 5 min =
= 300 sec
= 12.0 min =
= 720 sec
Formula for adjusted retention time is as follows.

= 300 sec - 30.0 sec
= 270 sec
= 720 sec - 30 sec
= 690 sec
Formula for relative retention (
) is as follows.

= 
= 2.56
Thus, we can conclude that the relative retention is 2.56.