Answer:
A. wool, silkworm, cocoon, and cellulose
Explanation:
I hope this helped!
<span>Molar mass(C)= 12.0 g/mol
Molar mass (O2)=2*16.0=32.0 g/mol
Molar mass (CO2)=44.0 g/mol
18g C*1mol C/12 g C = 1.5 mol C
C + O2 → CO2
from reaction 1 mol 1 mol 1 mol
from problem 1.5 mol 1.5 mol 1.5 mol
1.5 mol O2*32 g O2/1 mol O2 = 48 g O2
In reality this reaction requires only 48 g O2 for 18 g carbon.
And from 18 g carbon you can get only
1.5 mol CO2*44 g CO2/1 mol CO2=66 g CO2
But these problem has 72g CO2. The best that we can think, it is a mix of CO2 and O2.
So to find all amount of O2 that was added for the reaction (probably people who wrote this problem wanted this)
we need (the mix of 72g - mass of carbon 18 g)= 54 g.
So the only answer that is possible is </span><span>2.) 54 g.</span>
This question could be answered easily if the results of the abundance of the other elements are given. You will just have to subtract the sum of all their abundances to 100. Since it's not given, the solution would just be:
Na = 23 g/mol* 1 = 23 g
H = 1 g/mol * 1 = 1 g
C = 12 g/mol * 1 = 12 g
O = 16 g/mol * 3 = 48 g
Total = 84 g
% O = 48/84 * 100 = <em>57.14%</em>
Answer:
(a) 0.22 mol Cl₂ and 15.4g Cl₂
(b) 2.89.10⁻³ mol O₂ and 0.092g O₂
(c) 8 mol NaNO₃ and 680g NaNO₃
(d) 1,666 mol CO₂ and 73,333 g CO₂
(e) 18.87 CuCO₃ and 2,330g CuCO₃
Explanation:
In most stoichiometry problems there are a few steps that we always need to follow.
- Step 1: Write the balanced equation
- Step 2: Establish the theoretical relationship between the kind of information we have and the one we are looking for. Those relationships can be found in the balanced equation.
- Step 3: Apply conversion factor/s to the data provided in the task based on the relationships we found in the previous step.
(a)
Step 1:
2 Na + Cl₂ ⇄ 2 NaCl
Step 2:
In the balanced equation there are 2 moles of Na, thus 2 x 23g = 46g of Na. <u>46g of Na react with 1 mol of Cl₂</u>. Since the molar mass of Cl₂ is 71g/mol, then <u>46g of Na react with 71g of Cl₂</u>.
Step 3:


(b)
Step 1:
HgO ⇄ Hg + 0.5 O₂
Step 2:
<u>216.5g of HgO</u> form <u>0.5 moles of O₂</u>. <u>216.5g of HgO</u> form <u>16g of O₂</u>.
Step 3:


(c)
Step 1:
NaNO₃ ⇄ NaNO₂ + 0.5 O₂
Step 2:
<u>16g of O₂</u> come from <u>1 mol of NaNO₃</u>. <u>16g of O₂</u> come from <u>85g of NaNO₃</u>.
Step 3:


(d)
Step 1:
C + O₂ ⇄ CO₂
Step 2:
<u>12 g of C</u> form <u>1 mol of CO₂</u>. <u>12 g of C</u> form <u>44g of CO₂</u>.
Step 3:

[/tex]
(e)
Step 1:
CuCO₃ ⇄ CuO + CO₂
Step 2:
<u>79.5g of CuO</u> come from <u>1 mol of CuCO₃</u>. <u>79.5g of CuO</u> come from <u>123.5g of CuCO₃</u>.
Step 3:
