Answer:
In order to react with 45 g of water 1.25 moles of CaC₂ are required.
Explanation:
Given data:
Moles of CaC₂ needed = ?
Mass of water = 45.0 g
Solution:
Chemical equation:
CaC₂ + 2H₂O → C₂H₂ + Ca(OH)₂
Number of moles of water:
Number of moles = mass/ molar mass
Number of moles = 45 g/ 18 g/mol
Number of moles = 2.5 mol
Now we will compare the moles of water and CaC₂ from balance chemical equation:
H₂O : CaC₂
2 : 1
2.5 : 1/2×2.5 =1.25 mol
In order to react with 45 g of water 1.25 moles of CaC₂ are required.
Answer: sound can slow down, so when it travels through all of that it's muffled and kind of blocked. sound travels at 332 metres per second so it's hard to stop the sound
Explanation:
Explanation :
In the given case different law related to gas is given. The attached figure shows the required solution.
Boyle's law states that the pressure is inversely proportional to the volume of the gas i.e.


k is a constant.
Charle's law states that the volume of directly proportional to the temperature of the gas.


Combined gas law is the combination of the pressure, volume and the temperature of the gas i.e.

Hence, this is the required solution.
<span>Both plants and animals fight pathogens is because both have an ant. </span><span>The answer is B.
P</span>athogens is <span>a bacterium, virus, or other microorganism that can cause disease.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
</span>
Answer:
The pH of 0.1 M BH⁺ClO₄⁻ solution is <u>5.44</u>
Explanation:
Given: The base dissociation constant:
= 1 × 10⁻⁴, Concentration of salt: BH⁺ClO₄⁻ = 0.1 M
Also, water dissociation constant:
= 1 × 10⁻¹⁴
<em><u>The acid dissociation constant </u></em>(
)<em><u> for the weak acid (BH⁺) can be calculated by the equation:</u></em>

<em><u>Now, the acid dissociation reaction for the weak acid (BH⁺) and the initial concentration and concentration at equilibrium is given as:</u></em>
Reaction involved: BH⁺ + H₂O ⇌ B + H₃O+
Initial: 0.1 M x x
Change: -x +x +x
Equilibrium: 0.1 - x x x
<u>The acid dissociation constant: </u>![K_{a} = \frac{\left [B \right ] \left [H_{3}O^{+}\right ]}{\left [BH^{+} \right ]} = \frac{(x)(x)}{(0.1 - x)} = \frac{x^{2}}{0.1 - x}](https://tex.z-dn.net/?f=K_%7Ba%7D%20%3D%20%5Cfrac%7B%5Cleft%20%5BB%20%5Cright%20%5D%20%5Cleft%20%5BH_%7B3%7DO%5E%7B%2B%7D%5Cright%20%5D%7D%7B%5Cleft%20%5BBH%5E%7B%2B%7D%20%5Cright%20%5D%7D%20%3D%20%5Cfrac%7B%28x%29%28x%29%7D%7B%280.1%20-%20x%29%7D%20%3D%20%5Cfrac%7Bx%5E%7B2%7D%7D%7B0.1%20-%20x%7D)





<u>Therefore, the concentration of hydrogen ion: x = 3.6 × 10⁻⁶ M</u>
Now, pH = - ㏒ [H⁺] = - ㏒ (3.6 × 10⁻⁶ M) = 5.44
<u>Therefore, the pH of 0.1 M BH⁺ClO₄⁻ solution is 5.44</u>