Answer:
- <u>The arrow labeled 4: from gas to liquid.</u>
Explanation:
<em>Dew</em> is a manifestation of water condensation.
The air that surrounds us contains water vapor (humidity) from the evaporatoin of the water in the rivers, lakes, and the water with which you water the plants of your garden.
During the night, and specially in the early morning, before dawn, the temperature of the air descends, and part of the vapor in the air condensates in tiny droplets that accumulate over the surface of the plant's leaves, and other solid surfaces like the winshields and hoods of the cars.
Then, the phase transition that occurs is from gas (vapor) to liquid, which is called condensation and represented with the arrow labeled 4 on the diagram.
<span>Answer:
Graham's law of gaseous effusion states that the rate of effusion goes by the inverse root of the gas' molar mass.
râšM = constant
Therefore for two gases the ratio rates is given by:
r1 / r2 = âš(M2 / M1)
For Cl2 and F2:
r(Cl2) / r(F2) = âš{(37.9968)/(70.906)}
= 0.732 (to 3.s.f.)</span>
Answer:
a. 123.9°C
b.
c.
Explanation:
Hello, I'm attaching a picture with the numerical development of this exercise.
a. Since the steam is overheated vapour, the specific volume is gotten from the corresponding table. Then, as it became a saturated vapour, we look for the interval in which the same volume of state 1 is, then we interpolate and get the temperature.
b. Now, at 80°C, since it is about a rigid tank (constant volume for every thermodynamic process), the specific volume of the mixture is 0.79645 m^3/kg as well, so the specific volume for the liquid and the vapour are taken into account to get the quality of 0.234.
c. Now,since this is an isocoric process, the heat transfer per kg of steam is computed as the difference in the internal energy, considering the initial condition (showed in a. part) and the final one computed here.
** The thermodynamic data were obtained from Cengel's thermodynamics book 7th edition.
Best regards.
When we say decrease in boiling point, that means, we achieve boiling at a more lower temperature (lower than 100deg C). This is due to the lower atmospheric pressure. Boiling happens when the vapor pressure is equal the atmospheric pressure. Lower atmospheric pressure takes lower temperature for vapor pressure to equate with the atmospheric pressure. The answer here is letter B.
At higher elevations, it would take longer to hard boil an egg, because there is a lower boiling point, so the egg is boiling in water at a lower temperature.
Explanation: Electron dot structures are the lewis dot structures which represent the number of valence electrons around an atom in a molecule.
The electronic configuration of potassium is ![[Ar]4s^1](https://tex.z-dn.net/?f=%5BAr%5D4s%5E1)
Valence electrons of potassium are 1.
The electronic configuration of Bromine is ![[Ar]4s^24p^5](https://tex.z-dn.net/?f=%5BAr%5D4s%5E24p%5E5)
Valence electrons of bromine are 7.
These two elements form ionic compound.
Ionic compound is defined as the compound which is formed from the complete transfer of electrons from one element to another element.
Here, one electron is released by potassium which is accepted by bromine element. In this process, Potassium becomes cation having +1 charge and Bromine become anion having (-1) charge.
The ionic equation follows:

The electron dot structure is provided in the image below.