11.2L/22.4L (STP value) x 1 mol of CH4 x 16.04 g of CH4 = 8.2 g
Answer:
1.01atm is the pressure of the gas
Explanation:
The difference in heights in the two sides is because of the difference in pressure of the enclosed gas and the atmospheric pressure. This difference is in mm of the nonvolatile liquid. The difference in mm Hg is:
32.3mm * (0.993g/mL / 13.6g/mL) = 2.36mmHg
As atmospheric pressure is 765mm Hg and assuming the gas has more pressure than the atmospheric pressure (There is no illustration), the pressure of the gas is:
765mm Hg + 2.36mm Hg = 767.36 mmHg
In atm:
767.36 mmHg * (1atm / 760 mmHg) =
1.01atm is the pressure of the gas
Atomic mass Ni = 58.69 a.m.u
58.69 g ----------------- 6.02x10²³ atoms
?? g --------------------- 7.5x10¹⁵ atoms
58.69x (7.5x10¹⁵) / 6.02x10²³
=> 7.31x10⁻⁷ g
Answer:
20 kJ/mol
Explanation:
From ∆G°= -RTlnK
But
Ag2SO4(s)<----------->2Ag+(aq) + SO4^2-(aq)
Ksp= [2Ag+]^2 [SO4^2-]
But Ag+ = 0.032M
Ksp= (2×0.032)^2 (0.032)
Ksp= 1.31072×10^-4
∆G°= -RTlnK
∆G°= -(8.314× 298×(-8.93976))= 20KJmol-1( to the nearest KJ)
Flame colors are produced from the movement of the electrons in the metal ions present in the compounds. When you heat it, the electrons gain energy and can jump into any of the empty orbitals at higher levels Each of these jumps involves a specific amount of energy being released as light energy, and each corresponds to a particular color. As a result of all these jumps, a spectrum of colored lines will be produced. The color you see will be a combination of all these individual colors.