Answer:
The fraction of energy used to increase the internal energy of the gas is 0.715
Explanation:
Step 1: Data given
Cv for nitrogen gas = 20.8 J/K*mol
Cp for nitrogen gas = 29.1 J/K*mol
Step 2:
At a constant volume, all the heat will increase the internal energy of the gas.
At constant pressure, the gas expands and does work., if the volume changes.
Cp= Cv + R
⇒The value needed to change the internal energy is shown by Cv
⇒The work is given by Cp
To find what fraction of the energy is used to increase the internal energy of the gas, we have to calculate the value of Cv/Cp
Cv/Cp = 20.8 J/K*mol / 29.1 J/K*mol
Cv/Cp = 0.715
The fraction of energy used to increase the internal energy of the gas is 0.715
The title of Scientist was formally bestowed upon Sir Isaac Newton when he was
awarded the Merit Badge in Science at the age of 15, and he remained a Scientist
until he died, at the age of 84, on March 20, 1727, for a total duration of 69 years.
Yes, He was a productive scientist.He is one of the most important contributors to our understanding of how the universe works.
Answer: 53.3
Explanation:
V2=(T2 x P1 x V1)/(T1 x P2)
(320x50x80)/(300x80)
53.3
Answer:
Explanation:
Resonance structure occurs in an organic compound that undergoes resonance effects. This resonance effect is sometimes called the mesomeric effect helps to increases the stability of organic compounds that have alternating single bonds and double bonds.
The second resonance structure diagram for the ion given in the question can be found in the attached diagram below.
<span>Avogadro's number
represents the number of units in one mole of any substance. This has the value
of 6.022 x 10^23 units / mole. This number can be used to convert the number of
atoms or molecules into number of moles. We calculate as follows:
</span>1.40x10^23 molecules of N2 ( 1 mol / 6.022 x 10^23 molecules ) ( 28.02 g / mol ) = 6.51 g N2