Generally speaking, organic molecules tend to dissolve in solvents that have similar physical properties. A good rule of thumb is that "like dissolves like". Meaning, polar compounds can dissolve polar compounds and nonpolar compounds can dissolve nonpolar compounds.
To apply this to the current problem, we are told that the brushes are being cleaned with vegetable oil or mineral oil. In this case, the oils are used as solvents. In order for these solvents to be effective, the compounds they are trying to dissolve must be similar in structure and properties to other oils. Therefore, vegetable oil or mineral oil will be most effective in removing oil-based paints, as these will have the similar properties needed to dissolve in the oil solvents.
Well ask yourself why don't we count it in moles and you should get your answer.
Answer:
Explanation:Since the compound X has no net-dipole moment so we can ascertain that this compound is not associated with any polarity.
hence the compound must be overall non-polar. The net dipole moment of compound is zero means that the vector sum of individual dipoles are zero and hence the two individual bond dipoles associated with C-Cl bond must be oriented in the opposite directions with respect to each other.]
So we can propose that compound X must be trans alkene as only in trans compounds the individual bond dipoles cancel each other.
If one isomer of the alkene is trans then the other two isomers may be cis .
Since the two alkenes give the same molecular formula on hydrogenation which means they are quite similar and only slightly different.
The two possibility of cis structures are possible:
in the first way it is possible the one carbon has two chlorine substituents and the carbon has two hydrogens.
Or the other way could be that two chlorine atoms are present on the two carbon atoms in cis manner that is on the same side and two hydrogens are also present on the different carbon atoms in the same manner.
Kindly refer the attachments for the structure of compounds:
The Lewis structure for H₂CO is shown in the attached picture. The central atom is the carbon. However, I'm not sure which bond you're referring to. There can be two answers. The two C-H bonds are sp³ hybridized because it is a single bond. The C=O bond is sp² hybridized because it is a double bond.
The moles of chromium (iii) nitrate produced is calculated as follows
write the equation for reaction
3 Pb(NO3)2 + 2 Cr = 2 Cr(NO3)3 + 3 Pb
by use of mole ratio between Pb(NO3)2 to Cr(NO3)3 which is 3 : 2 the moles of Cr(NO3)3 is therefore
= 0.85 x2 /3 = 0.57 moles