Answer:
H2 P4 O1. Explanation: In order to calculate the Empirical formula , we will assume that we have started with 10 g of the compound.
Explanation:
Missing table!! write the elements with the first letter of the symbol with Upper Caps letters!!!
http://www.chemeddl.org/services/moodle/media/QBank/GenChem/Tables/EStandardTable.htm
<span>Ni2+ +Pb(s) → Ni(s) + Pb2+
</span>The potential of the oxidation of Pb(s) --> Pb2+(aq) is 0.126 V
The potential of the reduction go Ni2+(aq) --> Ni(s) is -0.25 V
<span>Add the two together and the potential for the reaction is -0.124 V (NO SPONTANEOUS THE SIGN IS NEGATIVE)
</span><span>au3+ + al(s) → au(s) + al3+Au3+(aq) -> Au(s) +1.5 VAl -> Al3+ +1.66VV= 3.16 (SPONTANEOUS THE SIGN OF THE PONTENTIAL IS POSITIVE)</span><span>Sr2+ + Sn(s) → Sr(s) + Sn2+
</span>
Sr2+(aq) + 2 e– <span> Sr(s) V= -2.89V
</span>Sn -> Sn2+ V= 0.14 V
V= -2.75 V (no spontaneous)
<span>Fe2+ + Cu(s) → Fe(s) + Cu2+
</span>Fe2+(aq) + 2 e–<span> </span><span> Fe(s) V= -0.44 V
</span>Cu -> C2+ V = - 0.337V
V= - 0.777V (no spontaneous)
Answer:
PNO₂ = 0.49 atm
PN₂O₄ = 0.45 atm
Explanation:
Let's begin with the equation of ideal gas, and derivate from it an equation that involves the density (ρ = m/V).
PV = nRT
n = m/M (m is the mass, and M the molar mass)


PxM = ρRT
ρ = PxM/RT
With the density of the gas mixture, we can calculate the average of molar mass (Mavg), with the constant of the gases R = 0.082 atm.L/mol.K, and T = 16 + 273 = 289 K

0.94Mavg = 63.9846
Mavg = 68.0687 g/mol
The molar mass of N is 14 g/mol and of O is 16 g/mol, than
g/mol and
g/mol. Calling y the molar fraction:

And,


So,





The partial pressure is the molar fraction multiplied by the total pressure so:
PNO₂ = 0.52x0.94 = 0.49 atm
PN₂O₄ = 0.48x0.94 = 0.45 atm
Cr{3+} + 3 NaF → CrF3 +
3 Na{+} <span>
First calculate the total mols of NaF.
(0.063 L) x (1.50 mol/L NaF) = 0.0945 mol NaF total </span>
Using stoichiometric
ratio:
<span>0.0945 mol NaF * (1 mol Cr3+ / 3 mol NaF) * (51.9961 g Cr3+/mol) =
1.6379 g Cr3+</span>
Answer:
Conduct electricity when they are molten, while covalent compounds usually do not conduct electricity when they are molten.