Answer:
40% of the ammonia will take 4.97x10^-5 s to react.
Explanation:
The rate is equal to:
R = k*[NH3]*[HOCl] = 5.1x10^6 * [NH3] * 2x10^-3 = 10200 s^-1 * [NH3]
R = k´ * [NH3]
k´ = 10200 s^-1
Because k´ is the psuedo first-order rate constant, we have the following:
b/(b-x) = 100/(100-40) ; 40% ammonia reacts
b/(b-x) = 1.67
log(b/(b-x)) = log(1.67)
log(b/(b-x)) = 0.22
the time will equal to:
t = (2.303/k) * log(b/(b-x)) = (2.303/10200) * (0.22) = 4.97x10^-5 s
Answer:
See explaination
Explanation:
please kindly see attachment for the step by step solution of the given problem.
Answer:
1.98 M
Explanation:
Given data
- Initial volume (V₁): 93.2 mL
- Initial concentration (C₁): 2.03 M
- Volume of water added: 3.92 L
Step 1: Convert V₁ to liters
We will use the relationship 1 L = 1000 mL.

Step 2: Calculate the final volume (V₂)
The final volume is the sum of the initial volume and the volume of water.

Step 3: Calculate the final concentration (C₂)
We will use the dilution rule.

Answer:
The concentration after 20 mins is 0.832 M
Explanation:
Zero order rate law is given by;
R = K [A₀]⁰
A zero order reaction, rate is independent of the initial concentration
R = K
Where;
R is the rate of reaction
K is the rate constant = 0.0416 M/min
Since R = K,
Then, R = 0.0416 M/min
After 20 min, the concentration will be;
A = Rt
A = (0.0416 M/min)(20 min)
A = 0.832 M
Therefore, the concentration after 20 mins is 0.832 M
Answer: The empirical formula of the compound is 
Explanation:
Empirical formula is defined formula which is simplest integer ratio of number of atoms of different elements present in the compound.
Percentage of iron in a compound = 36.76 %
Percentage of sulfur in a compound = 21.11 %
Percentage of oxygen in a compound = 42.13 %
Consider in 100 g of the compound:
Mass of iron in 100 g of compound = 36.76 g
Mass of iron in 100 g of compound = 21.11 g
Mass of iron in 100 g of compound = 42.13 g
Now calculate the number of moles each element:
Moles of iron=
Moles of sulfur=
Moles of oxygen=
Divide the moles of each element by the smallest number of moles to calculated the ratio of the elements to each other
For Iron element = 
For sulfur element =
For oxygen element = 
So, the empirical formula of the compound is 