According to the kmt pressure is directly proportional to the number of collision between particles
Answer:
0.74 grams of methane
Explanation:
The balanced equation of the combustion reaction of methane with oxygen is:
it is clear that 1 mol of CH₄ reacts with 2 mol of O₂.
firstly, we need to calculate the number of moles of both
for CH₄:
number of moles = mass / molar mass = (3.00 g) / (16.00 g/mol) = 0.1875 mol.
for O₂:
number of moles = mass / molar mass = (9.00 g) / (32.00 g/mol) = 0.2812 mol.
- it is clear that O₂ is the limiting reactant and methane will leftover.
using cross multiplication
1 mol of CH₄ needs → 2 mol of O₂
??? mol of CH₄ needs → 0.2812 mol of O₂
∴ the number of mol of CH₄ needed = (0.2812 * 1) / 2 = 0.1406 mol
so 0.14 mol will react and the remaining CH₄
mol of CH₄ left over = 0.1875 -0.1406 = 0.0469 mol
now we convert moles into grams
mass of CH₄ left over = no. of mol of CH₄ left over * molar mass
= 0.0469 mol * 16 g/mol = 0.7504 g
So, the right choice is 0.74 grams of methane
Answer:

Explanation:
First of all we need to find the amount of atoms per volume (m³). We can do this using the density and the molar mass.

Now, the fraction of vacancies is equal to the N(v)/N ratio.
- N(v) is the number of vacancies

- N is the number of atoms per volume calculated above.
Therefore:
The fraction of vacancies at 600 °C will be:

I hope it helps you!
In, 1937 Lawrence, in operating his cyclotron, bombarded a molybdenum-96 foil with deuterium ions (2h), producing for the first time an element not found in nature. He was initially unaware that the radioactivity produced by the "bombarded foil" was not from molybdenum but from a new, artificial element. It was his cooperation with Italian-American physicist <span>Emilio Segrè </span>that allowed the new element to be discovered. The answer is Technetium: Tc
To find the molar mass<span> of </span>Ba(NO3)2<span>, determine the </span>molar masses of all the atoms that form it. The Molar mass for Barium nitrate is <span>261.337 g/mol.</span>