SThe missing coefficient for the skeleton equation below is as follows
skeleton equation
Cr(s) + Fe(No3)2(aq) ------> Fe (s) + Cr(NO3)3 (aq)
the missing coefficient are is as follows
2 Cr(s) + 3 Fe(NO3)2 ---> 3 Fe (s) + 2 Cr(NO3)3
This is obtained by making sure all the molecules are balanced in both sides
Answer:
The responding variable of this experement is the outcome and that would be that the one in lemon juice responded and the one in water didn't (the other one is the control). Thus the responding varible is the one in lemon juice.
Explanation:
<h3>
Answer:</h3>
19.3 g/cm³
<h3>
Explanation:</h3>
Density of a substance refers to the mass of the substance per unit volume.
Therefore, Density = Mass ÷ Volume
In this case, we are given;
Mass of the gold bar = 193.0 g
Dimensions of the Gold bar = 5.00 mm by 10.0 cm by 2.0 cm
We are required to get the density of the gold bar
Step 1: Volume of the gold bar
Volume is given by, Length × width × height
Volume = 0.50 cm × 10.0 cm × 2.0 cm
= 10 cm³
Step 2: Density of the gold bar
Density = Mass ÷ volume
Density of the gold bar = 193.0 g ÷ 10 cm³
= 19.3 g/cm³
Thus, the density of the gold bar is 19.3 g/cm³
Answer:
Option A
Explanation:
Number of millimoles of Na3PO4 = 1 × 100 = 100
Number of millimoles of AgNO3 = 1 × 100 = 100
When 1 mole of Na3PO4 is dissociated we get 3 moles of sodium ions and 1 mole of phosphate ion
When 1 mole of AgNO3 is dissociated, we get 1 mole of Ag+ and 1 mole of NO3-
As Ag+ concentration is negligible, the dissociated Ag+ ion must have form the precipitate with phosphate ion and as number of moles of Ag+ and phosphate ion are same, therefore the concentration of phosphate ion must be negligible
Here as 100 millimoles of Na3PO4 is there, we get 300 millimoles of Na+ and 100 millimoles of PO43-
And as 100 millimoles of AgNO3 is there, we get 100 millimoles of Ag+ and 100 millimoles of NO3-
∴ Increasing order of concentration will be PO43- < NO3- < Na+
We first need to find the number of moles of gas in the container
PV = nRT
where;
P - pressure - 2.87 atm x 101 325 Pa/atm = 290 802.75 Pa
V - volume - 5.29 x 10⁻³ m³
n - number of moles
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature - 230 K
substituting these values in the equation
290 802.75 Pa x 5.29 x 10⁻³ m³ = n x 8.314 Jmol⁻¹K⁻¹ x 230 K
n = 0.804 mol
the molar mass = mass present / number of moles
molar mass of gas = 56.75 g / 0.804 mol
therefore molar mass is 70.6 g/mol