3.98 x 10⁻¹⁹ Joule
<h3>Further explanation</h3>
<u>Given:</u>
The green light has a frequency of about 6.00 x 10¹⁴ s⁻¹.
<u>Question:</u>
The energy of a photon of green light (in joules).
<u>The Process:</u>
The energy of a photon is given by 
- E = energy in joules
- h = Planck's constant 6.63 x 10⁻³⁴ Js
- f = frequency of light in Hz (sometimes the symbol f is written as v)
Let us find out the energy of the green light emitted per photon.

Thus, we get a result of 
- - - - - - - - - -
Notes
- When an electron moves between energy levels it must emit or absorb energy.
- The energy emitted or absorbed corresponds to the difference between the two allowed energy states, i.e., as packets of light called photons.
- A higher energy photon corresponds to a higher frequency (shorter wavelength) of light.
<h3>Learn more</h3>
- The energy of the orange light emitted per photon brainly.com/question/2485282#
- Determine the density of our sun at the end of its lifetime brainly.com/question/5189537
- Find out the kinetic energy of the emitted electrons when metal is exposed to UV rays brainly.com/question/5416146
Keywords: green light, frequency, the energy, a photon, Planck's constant, electrons, emitted, wavelength, joules
If the atom is neutral (meaning, not charged) the number of electron is equal to the number of protons. The mass number of an atom is the sum of the number of proton and the number of neutrons. From the given above, the mass number of gallium is 31 + 39. The answer is letter D. 70.
Answer:
What mass (g) of barium iodide is contained in 188 mL of a barium iodide solution that has an iodide ion concentration of 0.532 M?
A) 19.6
B) 39.1
C) 19,600
D) 39,100
E) 276
The correct answer to the question is
B) 39.1 grams
Explanation:
To solve the question
The molarity ratio is given by
188 ml of 0.532 M solution of iodide.
Therefore we have number of moles = 0.188 × 0.532 M = 0.100016 Moles
To find the mass, we note that the Number of moles =
from which we have
Mass = Number of moles × molar mass
Where the molar mass of Barium Iodide = 391.136 g/mol
= 0.100016 moles ×391.136 g/mol = 39.12 g
Hey there!:
From the given data ;
Reaction volume = 1 mL , enzyme content = 10 ug ( 5 ug in 2 mg/mL )
Enzyme mol Wt = 45,000 , therefore [E]t is 10 ug/mL , this need to be express as "M" So:
[E]t in molar = g/L * mol/g
[E]t = 0.01 g/L * 1 / 45,000
[E]t = 2.22*10⁻⁷
Vmax = 0.758 umole/min/ per mL
= 758 mmole/L/min
=758000 mole/L/min => 758000 M
Therefore :
Kcat = Vmax/ [E]t
Kcat = 758000 / 2.2*10⁻⁷ M
Kcat = 3.41441 *10¹² / min
Kcat = 3.41441*10¹² / 60 per sec
Kcat = 5.7*10¹⁰ s⁻¹
Hence kcat of xyzase is 5.7*10¹⁰ s⁻¹
Hope that helps!