Answer:
Temperature at which molybdenum becomes superconducting is-272.25°C
Explanation:
Conductor are those hard substances which allows path of electric current through them. And super conductors are those hard substances which have resistance against the flow of electric current through them.
As given, molybdenum becomes superconducting at temperatures below 0.90 K.
Temperature in Kelvins can be converted in °C by relation:
T(°C)=273.15-T(K)
Molybdenum becomes superconducting in degrees Celsius.
T(°C)=273.15-0.90= -272.25 °C
Temperature at which molybdenum becomes superconducting is -272.25 °C
Answer:
One ATP molecule's hydrolysis can move 3 ions of Sodium (Na+) across the menbrane.
Explanation:
As you can see, the energy provided by ATP is enough for moving 3 ions of Na+. Each ion needs +2.1 kcal/mol of energy.
If we multiply by 3 the energy for moving across the membrane= +6.3 kcal/mol
By adding the energy from ATP:
ΔGTotal=6.3-7.3= -1 kcal/mol
Answer:
A. Yes, there is more than enough sodium carbonate.
Explanation:
Hello,
In this case, based on the given reaction which is:

By stoichiometry, one computes the grams of sodium carbonate that will neutralize 1,665 g of sulfuric acid as shown below:

Thus, the available mass is 2.0 kg so 0.2 kg are in excess, therefore: A. Yes, there is more than enough sodium carbonate.
Best regards.
Answer:
177.277amu
Explanation:
the total occuring isotopes for Hafnium is =6.
First isotope had an atomic weight of 173.940amu
Second isotope =175.941amu
Third isotope =176.943amu
Fourth isotope=177.944amu
Fifth isotope. =178.946amu
sixth isotope .179.947amu
<em>Avera</em><em>ge</em><em> </em><em>ato</em><em>mic</em><em> </em><em>wei</em><em>ght</em><em> </em><em>of</em><em> </em><em>Haf</em><em>nium</em><em>=</em><em> </em><em>sum</em><em> </em><em>of</em><em> </em><em>all</em><em> </em><em>the </em><em>atomi</em><em>c</em><em> </em><em>weights</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>iso</em><em>topes</em><em>/</em><em> </em><em>Tota</em><em>l</em><em> </em><em>occu</em><em>ring</em><em> </em><em>isotopes</em>
Thus, 173.940amu+175.941amu+176.943amu+177.944amu+178.946amu+179.947amu.= 1063.661amu
Average atomic weight= 1063.661amu /6 = 177.2768333amu
= 177.277amu to 3 decimal places.
Answer:
104.84 moles
Explanation:
Given data:
Moles of Boron produced = ?
Mass of B₂O₃ = 3650 g
Solution:
Chemical equation:
6K + B₂O₃ → 3K₂O + 2B
Number of moles of B₂O₃:
Number of moles = mass/ molar mass
Number of moles = 3650 g/ 69.63 g/mol
Number of moles = 52.42 mol
Now we will compare the moles of B₂O₃ with B from balance chemical equation:
B₂O₃ : B
1 : 2
52.42 : 2×52.42 = 104.84
Thus from 3650 g of B₂O₃ 104.84 moles of boron will produced.