Answer:
Ensure that the glassware is designed for heating
Check that there are no cracks in the glassware
Inspect the hot plate for frayed cords
Explanation:
All except measuring the height and width of the glassware could cause hazards within the lab.
The correct option is C. The amount of MgCl2. we know this because <span>no matter how much you increase KOH, if you dont increase Mgcl2, the amount of Mg(OH)2 remains the same. Hope this works for you</span>
Answer:
The final volume is 39.5 L = 0.0395 m³
Explanation:
Step 1: Data given
Initial temperature = 200 °C = 473 K
Volume = 0.0250 m³ = 25 L
Pressure = 1.50 *10^6 Pa
The pressure reduce to 0.950 *10^6 Pa
The temperature stays constant at 200 °C
Step 2: Calculate the volume
P1*V1 = P2*V2
⇒with P1 = the initial pressure = 1.50 * 10^6 Pa
⇒with V1 = the initial volume = 25 L
⇒with P2 = the final pressure = 0.950 * 10^6 Pa
⇒with V2 = the final volume = TO BE DETERMINED
1.50 *10^6 Pa * 25 L = 0.950 *10^6 Pa * V2
V2 = (1.50*10^6 Pa * 25 L) / 0.950 *10^6 Pa)
V2 = 39.5 L = 0.0395 m³
The final volume is 39.5 L = 0.0395 m³
To determine the number of potassium laid side by side by a given distance, we simply divide the total distance to the diameter of each atom. The diameter is twice the radius of the atom. We calculate as follows:
number of atoms = 4770 / 231x10^-12 = 2.06x10^13 atoms
[ H₃O⁺] = 10 ^ - pH
[ H₃O⁺ ] = 10 ^ - 7.30
[ H₃O⁺ ] = 5.011 x 10⁻⁸ M
hope this helps!