Answer:
2.1
Explanation:
Calculation of moles of 
Mass of copper = 5.3 g
Molar mass of copper = 315.46 g/mol
The formula for the calculation of moles is shown below:

Thus,

Moles of
= 0.0168 moles
According to the reaction,

1 mole of
react with 1 mole of 
0.0168 moles of
react with 0.0168 moles of 
Moles of
= 0.0168 moles
Molar mass of
= 126.07 g/mol
Thus,
<u>Mass = Moles * Molar mass = 0.0168 moles * 126.07 g/mol = 2.1 g</u>
<u>Answer - 2.1</u>
Answer:
Mole fraction of methanol will be closest to 4.
Explanation:
Given, Mass of methanol = 128 g
Molar mass of methanol = 32.04 g/mol
The formula for the calculation of moles is shown below:
Thus,
Given, Mass of water = 108 g
Molar mass of water = 18.0153 g/mol
The formula for the calculation of moles is shown below:
Thus,
So, according to definition of mole fraction:

<u>Mole fraction of methanol will be closest to 4.</u>
Answer:
Explanation:
As per Boltzman equation, <em>kinetic energy (KE)</em> is in direct relation to the <em>temperature</em>, measured in absolute scale Kelvin.
Then, <em>the temperature at which the molecules of an ideal gas have 3 times the kinetic energy they have at any given temperature will be </em><em>3 times</em><em> such temperature.</em>
So, you must just convert the given temperature, 32°F, to kelvin scale.
You can do that in two stages.
- First, convert 32°F to °C. Since, 32°F is the freezing temperature of water, you may remember that is 0°C. You can also use the conversion formula: T (°C) = [T (°F) - 32] / 1.80
- Second, convert 0°C to kelvin:
T (K) = T(°C) + 273.15 K= 273.15 K
Then, <u>3 times</u> gives you: 3 × 273.15 K = 819.45 K
Since, 32°F has two significant figures, you must report your answer with the same number of significan figures. That is 820 K.
Answer:
a. electrophilic aromatic substitution
b. nucleophilic aromatic substitution
c. nucleophilic aromatic substitution
d. electrophilic aromatic substitution
e. nucleophilic aromatic substitution
f. electrophilic aromatic substitution
Explanation:
Electrophilic aromatic substitution is a type of chemical reaction where a hydrogen atom or a functional group that is attached to the aromatic ring is replaced by an electrophile. Electrophilic aromatic substitutions can be classified into five classes: 1-Halogenation: is the replacement of one or more hydrogen (H) atoms in an organic compound by a halogen such as, for example, bromine (bromination), chlorine (chlorination), etc; 2- Nitration: the replacement of H with a nitrate group (NO2); 3-Sulfonation: the replacement of H with a bisulfite (SO3H); 4-Friedel-CraftsAlkylation: the replacement of H with an alkyl group (R), and 5-Friedel-Crafts Acylation: the replacement of H with an acyl group (RCO). For example, the Benzene undergoes electrophilic substitution to produce a wide range of chemical compounds (chlorobenzene, nitrobenzene, benzene sulfonic acid, etc).
A nucleophilic aromatic substitution is a type of chemical reaction where an electron-rich nucleophile displaces a leaving group (for example, a halide on the aromatic ring). There are six types of nucleophilic substitution mechanisms: 1-the SNAr (addition-elimination) mechanism, whose name is due to the Hughes-Ingold symbol ''SN' and a unimolecular mechanism; 2-the SN1 reaction that produces diazonium salts 3-the benzyne mechanism that produce highly reactive species (including benzyne) derived from the aromatic ring by the replacement of two substituents; 4-the free radical SRN1 mechanism where a substituent on the aromatic ring is displaced by a nucleophile with the formation of intermediary free radical species; 5-the ANRORC (Addition of the Nucleophile, Ring Opening, and Ring Closure) mechanism, involved in reactions of metal amide nucleophiles and substituted pyrimidines; and 6-the Vicarious nucleophilic substitution, where a nucleophile displaces an H atom on the aromatic ring but without leaving groups (such as, for example, halogen substituents).
No of moles of naoh = 2.40 ÷ (23+16+1) = 0.06mol
no of moles of na2co3 = 0.06 ÷ 2 = 0.03mol
mass of na2co3 = 0.03 × (23×2+12+16×3) = 0.03 × 106 = 3.18g