The answer is
<span>The density (D) is quotient of mass (m) and
volume (V):
</span>

The unit is g/cm³
It is given:
m = 1.62 kg = 1620 g
V = 205 mL = 205 cm³
D = ?
Thus:

The density of the goblet is 7.90 g/cm³.
The chemical formula for the compound can be written as,
CxHyOz
where x is the number of C atoms, y is the number of H atoms, and z is the number of O atoms. The combustion reaction for this compound is,
CxHyOz + O2 --> CO2 + H2O
number of moles of C:
(0.7191 g)(1 mol CO2/44 g of CO2) = 0.0163 mol CO2
This signifies that 0.0163 mole of C and the mass of carbon in the compound,
(0.0163 mols C)(12 g C/ 1 mol C) = 0.196 g C
number of moles H:
(0.1472 g H2O)(1 mol H2O/18 g H2O) = 0.00818 mol H2O
This signifies that there are 0.01635 atoms of H in the compound.
mass of H in the compound = (0.01635 mols H)(1 g of H) = 0.01635 g H
Mass of oxygen in the compound,
0.3870 - (0.196 g C + 0.01635 g H) = 0.1746 g
Moles O in the compound = (0.1746 g O)(1 mol O/16 g O) = 0.0109 mols O
The formula of the compound is,
C0.0163H0.01635O0.0109
Dividing the numbers by the least number,
C3/2H3/2O
The empirical formula of the compound is therefore,
<em> C₃H₃O₂</em>
Answer:
(a) I⁻ (charge 1-)
(b) Sr²⁺ (charge 2+)
(c) K⁺ (charge 1+)
(d) N³⁻ (charge 3-)
(e) S²⁻ (charge 2-)
(f) In³⁺ (charge 3+)
Explanation:
To predict the charge on a monoatomic ion we need to consider the octet rule: atoms will gain, lose or share electrons to complete their valence shell with 8 electrons.
(a) |
I has 7 valence electrons so it gains 1 electron to form I⁻ (charge 1-).
(b) Sr
Sr has 2 valence electrons so it loses 2 electrons to form Sr²⁺ (charge 2+).
(c) K
K has 1 valence electron so it loses 1 electron to form K⁺ (charge 1+).
(d) N
N has 5 valence electrons so it gains 3 electrons to form N³⁻ (charge 3-).
(e) S
S has 6 valence electrons so it gains 2 electrons to form S²⁻ (charge 2-).
(f) In
In has 3 valence electrons so it loses 3 electrons to form In³⁺ (charge 3+).
Br2 == 2Br
24% dissociated => n total moles, 0.24 mol*n of Br, and 0.76*n mol of Br2
=> partial pressure of Br, P Br = 0.24 bar, and
partical pressure of Br2, P Br2 = 0.76 bar
kp = (P Br)^2 / P Br2 = (0.24)^2 / 0.76 = 0.0758
Answer:
The
of the given reaction is -129.6 kJ
Explanation:
The given chemical reaction is as follows.

Enthalpy of each reactant and products are as follows.




In the given chemical reaction involved two C-H bonds in the reactant side and one C-C bond in the product side therefore, the enthalpy of formation will be the negative.



Therefore, The
of the given reaction is -129.6 kJ