Answer:
Molar concentration of the weak acid solution is 0.0932
Explanation:
Using the formula: 
Where Ca = molarity of acid
Cb = molarity of base = 0.0981 M
Va = volume of acid = 25.0 mL
Vb = volume of base = 23.74 mL
na = mole of acid
nb = mole of base
Since the acid is monopromatic, 1 mole of the acid will require 1 mole of NaOH. Hence, na = nb = 1
Therefore, 
Ca = 0.0981 x 23.74/25.0
= 0.093155 M
To 4 significant figure = 0.0932 M
The kinetic energy of the products is equal to the energy liberated which is 92.2 keV. But let's convert the unit keV to Joules. keV is kiloelectro volt. The conversion that we need is: 1.602×10⁻¹⁹ <span>joule = 1 eV
Kinetic energy = 92.2 keV*(1,000 eV/1 keV)*(</span>1.602×10⁻¹⁹ joule/1 eV) = 5.76×10²³ Joules
From kinetic energy, we can calculate the velocity of each He atom:
KE = 1/2*mv²
5.76×10²³ Joules = 1/2*(4)(v²)
v = 5.367×10¹¹ m/s
The roots could no longer access depleted groundwater.
The topsoil in the area eroded.
The molarity of KBr solution is 1.556 M
molarity is defined as the number of moles of solute in volume of 1 L solution.
the number of KBr moles in 1 L - 1.556 mol
Therefore in 200.0 L - 1.556 mol/L x 200.0 L = 311.2 mol
Molar mass of KBr - 119 g/mol
mass of Kbr - 311.2 mol x 119 g/mol = 37 033 g
mass of solute therefore is 37.033 kg
The Lewis structure of
Diimide (N₂H₂) is shown below.
In this molecule two Nitrogen atoms attached to each other through a
double bond are further attached to one one Hydrogen atom. Also, each Nitrogen atom carries one
non-binding electron pair (
Lone Pair) (Highlighted RED).
Result: Option-C (<span>each nitrogen has one nonbinding electron pair) is the correct answer.</span>