Flame colors are produced from the movement of the electrons in the metal ions present in the compounds. When you heat it, the electrons gain energy and can jump into any of the empty orbitals at higher levels Each of these jumps involves a specific amount of energy being released as light energy, and each corresponds to a particular color. As a result of all these jumps, a spectrum of colored lines will be produced. The color you see will be a combination of all these individual colors.
1) Find the number of molecules in 7.88 g of sulfur
molar mass of S8 = 8*atomic mass of S = 8 * 32.0 g / mol = 256.0 g/mol
Number of moles = mass in grams / atomic mass = 7.88 g / 256.0 g / mol = 0.0308 moles
2) Find the mass of 0.0308 moles of P4
mass = number of moles * molar mass
molar mass of P4 = 4 * atomic mass of P = 4 * 31 g/mol = 124 g/mol
mass of P4 = 0.0308 moles * 124 g/mol = 3.8192g ≈ 3.82 g.
Answer: 3.82 grams of P4 will have the same number of molecules as 7.88 g of S8 (that is 0.0308 moles of molecules)
Answer:
The product of reduction of glucose is sorbitol
The side effects caused by too much sorbitol consumption include: Diarrhea, Nausea, stomach discomfort
Explanation:
Please find attached the reaction of glucose with NADPH to produce sorbitol
D is the correct answer
every other option contains an element
The answer is 200 g.
If the molar mass of CaCl2 is 110.98 g/mol, this means there are 110.98 g in 1 L of 1 M solution.
Let's find how many g of CaCl2 are present in 0.720 M.
110.98 g : 1 M = x : 0.720 M
x = 110.98 g * 0.720 M : 1 M
x = 79.90 g
So there are 79.90 g in 0.720 M. In other words, in 1 L of 0.720 M solution there will be 79.90 g.
Now, we need to prepare ten beakers with 250 mL of solutions:
10 * 250 mL = 2500 mL = 2.5 L
79.90 g : 1 L = x : 2.5 L
x = 79.90 g * 2.5 L : 1 L
x = 199.75 g ≈ 200 g