Answer:
The equation for the reaction of one sodium bicarbonate ( NaHCO3 ) molecule with one citric acid (C6H8O7) molecule is the following:
Sodium Bicarbonate + Citric Acid ⇒ Water + Carbon Dioxide + Sodium Citrate
NaHCO3 + C6H8O7 ⇒ 3 CO2 + 3 H2O + Na3C6H5O7
Explanation:
The reaction is in balance, that is, the whole H2CO3 is not finished, but a little bit of this acid is left in the solution. Therefore, when sodium bicarbonate is added to the solution with citric acid, sodium citrate salt (C6H5O7Na3) and carbonic acid (H2CO3) are formed, which is rapidly broken down into water (H2O) and carbonic oxide (CO2).
C6H8O7 + NaHCO3 ⇒ C6H5O7Na3 + 3 H2CO3
C6H5O7Na3 + 3 H2CO3 ⇔ C6H5O7Na3 + 3 H2O + 3 CO2
To help, I drew a diagram. This represents an ionic bond between Na and Cl. Na is giving his single electron to Cl, which is indicated by the arrow, to make Cl full with 8 electrons.
Q is unlike K value it describes the reaction that is not at equilibrium.
by considering this reaction:
aA+ bB⇄ cC
and our reaction is:
Br2 + Cl2 ⇄ 2 BrCl
According to Q low:
Q= concentration of products/concentration of reactants
but this equation in the gaseous or aqueous states only.
∴ Q = [BrCl]^2 / [Br2] [Cl2]
and we have [Br2] = 0.00366 m [Cl2]= 0.000672 m [BrCl] = 0.00415 m
by substitution:
= [0.00415]^2 / ( [0.00366] * [0.000672])
∴ Q = 7
Answer : The volume of solution will be 2.96 liters.
Explanation :
Molarity : It is defined as the number of moles of solute present in one liter of volume of solution.
Formula used :

In this question, the solute is NaF.
Now put all the given values in this formula, we get:



Therefore, the volume of solution will be 2.96 liters.