Answer:
False. It should read that both plant and animal species are in danger of extinction, and climate change can destroy habitats.
Explanation:
Answer : Option A) Ethanoic Acid
Explanation : Ethanoic acid has the lowest vapor pressure i.e 0.08 atm at the temperature of 50°C compared to the other given options.
The vapour pressure of propanone at 50°C is 0.84 atm
Ethanol has vapour pressure as 0.30 atm at 50°C
water has vapour pressure of 0.12 atm at 50°C.
Answer:
The correct answer is option C, that is, ΔS and ΔSsurr for the process H2O (s) ⇒ H2O(l) are equal in magnitude and opposite in sign.
Explanation:
The temperature at which solid state of water get transformed into liquid state is termed as the melting point of 0 °C. It can be shown by the reaction:
H2O (s) ⇒ H2O (l)
The degree of randomness of a molecule is known as entropy. With the transformation of ice into liquid state, there is an increase in randomness. Thus, the value of entropy becomes positive as shown:
Entropy change (ΔSsys) = ΔSproduct - ΔSreactant
= (69.9 - 47.89) J mol/K
= 22.0 J mol/K
Therefore, the value of entropy change is positive.
Now the value of entropy for surrounding ΔSsurr will be,
ΔSsurr = -ΔHfusion/T
= -6012 j/mol/273
= -22.0 J/molK
Hence, the value of ΔSsurr and ΔSsys exhibit same magnitude with opposite sign.
Answer:
=> 572.83 K (299.83°C).
=> 95.86 m^2.
Explanation:
Parameters given are; Water flowing= 13.85 kg/s, temperature of water entering = 54.5°C and the temperature of water going out = 87.8°C, gas flow rate 54,430 kg/h(15.11 kg/s). Temperature of gas coming in = 427°C = 700K, specific heat capacity of hot gas and water = 1.005 kJ/ kg.K and 4.187 KJ/kg. K, overall heat transfer coefficient = Uo = 69.1 W/m^2.K.
Hence;
Mass of hot gas × specific heat capacity of hot gas × change in temperature = mass of water × specific heat capacity of water × change in temperature.
15.11 × 1.005(700K - x ) = 13.85 × 4.187(33.3).
If we solve for x, we will get the value of x to be;
x = 572.83 K (2.99.83°C).
x is the temperature of the exit gas that is 572.83 K(299.83°C).
(b). ∆T = 339.2 - 245.33/ln (339.2/245.33).
∆T = 93.87/ln 1.38.
∆T = 291.521K.
Heat transfer rate= 15.11 × 1.005 × 10^3 (700 - 572.83) = 1931146.394.
heat-transfer area = 1931146.394/69.1 × 291.521.
heat-transfer area= 95.86 m^2.
Answer:
Sodium arachidate; Sodium palmitate and Sodium palmitate
Explanation:
Triglycerides are esters of fatty acids with glycerol. In triglycerides, three fatty acid molecules are linked by ester bonds to each of the three carbon atoms in a glycerol molecule. The fatty acids may be same or different fatty acid molecules. Hydrolysis of triglycerides yields the three fatty acid molecules and glycerol.
Saponification is the process by which a base is used to catalyst the hydrolysis of the ester bonds in glycerides. The products of this base-catalyzed hydrolysis of triglycerides are the metallic salts of the three fatty acids and glycerol. The salts of the fatty acids are known as soaps.
For a triglyceride that has the fatty acid chains arachidic acid, palmitic acid and palmitic acid attached to the three backbone carbons glycerol, the saponification of the triglyceride with NaOH will yield the sodium salts or soaps of the three fatty acids as well as glycerol.
Arachidic acid will react with NaOH to yield sodium arachidate.
The two palmitic acid molecules will each react with NaOH to yield sodium palmitate.