answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mylen [45]
2 years ago
10

As part of a science experiment, Jose did a test for starch on a slice of apple and a slice of potato. The yellow-orange iodine

solution stayed the same color when it was put on the apple, but it became black on the potato.
Chemistry
1 answer:
juin [17]2 years ago
5 0

Answer:

See explanation

Explanation:

Iodine solution is used to test for starch.  A positive test for starch gives a blue-black color.

The fact that the color of the apple remained the same is indicative of the fact that starch was not contained in the apple.

A change in the color of potato indicates the presence of starch in the potato.

The fact that iodine did not react with apple should not be taken to mean that apples contain no starch at all. Starch changes gradually to sugar as fruits ripen. This is why the apple gave a negative test for starch.

You might be interested in
Consider the following incomplete reaction. Mg + 2Y ---> MgCl₂ + H₂ Choose the formula for the missing substance Y.
vesna_86 [32]
It would be B as the answer
7 0
2 years ago
Watch the video to determine which of the following relationships correctly depict the relationship between pressure and volume
AnnZ [28]

Answer : The correct options are,

(B) V\propto \frac{1}{P}

(C) P\propto \frac{1}{V}

Explanation :

Boyle's Law : It is defined as the pressure of the gas is inversely proportional to the volume of the gas at constant temperature and number of moles.

P\propto \frac{1}{V}

or,

V\propto \frac{1}{P}

The relation between the pressure and volume of two gases are:

P_1V_1=P_2V_2

where,

P_1 = initial pressure of gas

P_2 = final pressure of gas

V_1 = initial volume of gas

V_2 = final volume of gas

5 0
2 years ago
You have two 500.0 ml aqueous solutions. solution a is a solution of a metal nitrate that is 8.246% nitrogen by mass the ionic c
almond37 [142]

1) Answer is: the ionic compound in the solution b is K₂CrO₄ (potassium chromate).

Ionic compound in solution b has two potassiums (oxidation number +1), one chromium (oxidation number +6) and four oxygens. Oxidation number of oxygen is -2 and compound has neutral charge:

2 · (+1) + 6 + x · (-2) = 0.

x = 4; number of oxygen atoms.

2) Answer is: the ionic compound in solution a is AgNO₃ (silver nitrate).

ω(N) = 8.246% ÷ 100%.

ω(N) = 0.08246; mass percentage of nitrogen.

M(MNO₃) = M(N) ÷ ω(N).

M(MNO₃) = 14 g/mol ÷ 0.08246.

M(MNO₃) = 169.8 g/mol; molar mass of metal nitrate.

M(M) = M(MNO₃) - M(N) - 3 · M(O).

M(M) = 169.8 g/mol - 14 g/mol - 3 · 16 g/mol.

M(M) = 107.8 g/mol; atomic mass of metal, this metal is silver (Ag).

3) Balanced chemical reaction:  

2AgNO₃(aq) + K₂CrO₄(aq) → Ag₂CrO₄(s) + 2KNO₃(aq).

Ionic reaction:  

2Ag⁺(aq) + 2NO₃(aq) + 2K⁺(aq) + CrO₄²⁻(aq) → Ag₂CrO₄(s) + 2K⁺(aq) + 2NO₃⁻(aq).

Net ionic reaction: 2Ag⁺(aq) + CrO₄²⁻(aq) → Ag₂CrO₄(s).

Answer is: the blood-red precipitate is silver chromate (Ag₂CrO₄).

4) m(Ag₂CrO₄) = 331.8 g; mass of solid silver chromate.

n(Ag₂CrO₄) = m(Ag₂CrO₄) ÷ M(Ag₂CrO₄).

n(Ag₂CrO₄) = 331.8 g ÷ 331.8 g/mol.

n(Ag₂CrO₄) = 1 mol; amount of silver chromate.

From balanced chemical reaction: n(Ag₂CrO₄) : n(AgNO₃) = 1 : 2.

n(AgNO₃) = 2 · 1 mol.

n(AgNO₃) = 2 mol.

m(AgNO₃) = n(AgNO₃) · M(AgNO₃).

m(AgNO₃) = 2 mol · 169.8 g/mol.

m(AgNO₃) = 339.6 g; mass of silver nitrate.

m(AgNO₃) = m(K₂CrO₄).

m(K₂CrO₄) = 339.6 g; mass of potassium chromate.

n(K₂CrO₄) = m(K₂CrO₄) ÷ M(K₂CrO₄).

n(K₂CrO₄) = 339.6 g ÷ 194.2 g/mol.

n(K₂CrO₄) = 1.75 mol; amount of potassium chromate.

5) Chemical reaction of dissociation of silver nitrate in water:

AgNO₃(aq) → Ag⁺(aq) + NO₃⁻(aq).

V(solution a) = 500 mL ÷ 1000 mL/L.

V(solution a) = 0.5 L; volume of solution a.

c(AgNO₃) = n(AgNO₃) ÷ V(solution a).

c(AgNO₃) = 2 mol ÷ 0.5 L.

c(AgNO₃) = 4 mol/L = 4 M.

From dissociation of silver nitrate: c(AgNO₃) = c(Ag⁺) = c(NO₃⁻).

c(Ag⁺) = 4 M; the concentration of silver ions in the original solution a.

c(NO₃⁻) = 4 M; the concentration of silver ions in the original solution a.

6) Chemical reaction of dissociation of potssium chromate in water:

K₂CrO₄(aq) → 2K⁺(aq) + CrO₄²⁻(aq).

V(solution b) = 500 mL ÷ 1000 mL/L.

V(solution b) = 0.5 L; volume of solution b.

c(K₂CrO₄) = n(K₂CrO₄) ÷ V(solution b).

c(AgNO₃) = 1.75 mol ÷ 0.5 L.

c(AgNO₃) = 3.5 mol/L = 3.5 M.

From dissociation of silver nitrate: c(K₂CrO₄) = c/2(K⁺) = c(CrO₄²⁻).

c(K⁺) = 7 M; the concentration of potassium ions in the original solution b.

c(CrO₄²⁻) = 3.5 M; the concentration of silver ions in the original solution b.

7) V(final solution) = V(solution a) + V(solution b).

V(final solution) = 500.0 mL + 500.0 mL.

V(final solution) = 1000 mL ÷ 1000 mL/L.

V(final solution) = 1 L.

n(NO₃⁻) = 2 mol.

c(NO₃⁻) = n(NO₃⁻) ÷ V(final solution)

c(NO₃⁻) = 2 mol ÷ 1 L.

c(NO₃⁻) = 2 M; the concentration of nitrate anions in final solution.

8) in the solution b there were 3.5 mol of potassium cations, but one part of them reacts with 2 moles of nitrate anions:

K⁺(aq) + NO₃⁻(aq) → KNO₃(aq).

From chemical reaction: n(K⁺) : n(NO₃⁻) = 1 : 1.

Δn(K⁺) = 3.5 mol - 2 mol.

Δn(K⁺) = 1.5 mol; amount of potassium anions left in final solution.

c(K⁺) = Δn(K⁺) ÷ V(final solution).

c(K⁺) = 1.5 mol ÷ 1 L.

c(K⁺) = 1.5 M; the concentration of potassium cations in final solution.

4 0
2 years ago
The means of X ? ⊙_⊙⊙_⊙⊙_⊙​
julsineya [31]

Answer:

x means unknown it is an unknown value.

For example if you have 2 x you have 2 u know values.

Explanation:

If you want us to explain it further please provide a picture.

5 0
2 years ago
Read 2 more answers
5.00 g of hydrogen gas and 50.0g of oxygen gas are introduced into an otherwise empty 9.00L steel cylinder, and the hydrogen is
GenaCL600 [577]
1) Balanced chemical reaction:

2H2 + O2 -> 2H20

Sotoichiometry: 2 moles H2: 1 mol O2 : 2 moles H2O

2) Reactant quantities converted to moles

H2: 5.00 g / 2 g/mol = 2.5 mol

O2: 50.0 g / 32 g/mol = 1.5625 mol

Limitant reactant: H2 (because as per the stoichiometry it will be consumed with 1.25 mol of O2).

3) Products

H2 totally consumed -> 0 mol at the end

O2 = 1.25 mol consumed -> 1.5625 mol - 1.25 mol = 0.3125 mol at the end

H2O: 2.5 mol H2 produces 2.5 mol H2O -> 2.5 mol at the end.

Total number of moles: 0.3125mol + 2.5 mol = 2.8125 mol

4) Pressure

Use pV = nRT
n = 2.8125
V= 9 liters
R = 0.082 atm*lit/K*mol
T = 35 C + 273.15 = 308.15K

p = nRT/V  = 7.9 atm
3 0
2 years ago
Read 2 more answers
Other questions:
  • A gram of gasoline produces 45.0kj of energy when burned. gasoline has a density of 0.77/gml . how would you calculate the amoun
    6·1 answer
  • In the reaction C + O2 → CO2, 18 g of carbon react with oxygen to produce 72 g of carbon dioxide. What mass of oxygen would be n
    15·1 answer
  • The half-life of C-14 is 5470 years. If a particular archaeological sample has one-quarter of its original radioactivity remaini
    15·2 answers
  • 15. An apparatus consists of a 4.0 dm3
    14·2 answers
  • How would each of the following procedural errors affect the results to be expected in this experiment? Give your reasoning in e
    7·1 answer
  • Which of the following accurately represents the relationship between ceramic and metal?
    11·1 answer
  • What is the molarity if 2.00 liters containing 49.0 grams of sodium carbonate [Na2CO3)?
    5·1 answer
  • What is the value of Keq for the reaction expressed in scientific notation? 2.1 x 10-2 2.1 x 102 1.2 x 103 1.2 x 10-3
    14·2 answers
  • Succinic acid is a substance produced by lichens, Chemical analysis indicates it is composed of 40.68% carbon, 5.08% hydrogen, a
    6·1 answer
  • Give an example of a rule of the natural world that a scientist can assume is always true.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!