We can solve this without a concrete formula through dimensional analysis. This works by manipulating the units such that you end up with the unit of the final answer. Manipulate them by cancelling units that appear both in the numerator and denominator side. As a result, we must be left with the units of g. The current in A or amperes is equivalent to amount of Coulombs per second. Since this involves Coulombs, we will use the Faraday's constant which is 96,500 C/mol electron. The reaction is:
Cr³⁺(aq) + 3e⁻ --> Cr(s)
This means that for every 3 moles of electron transferred, 1 mole of Chromium metal is plated. The molar mass of Cr: 52 g/mol. The solution is as follows:
Mass of Chromium metal = (8 C/s)(60 s/1 min)(160 min)(1 mol e⁻/96,500 C)(1 mol Cr/3 mol e)(52 g/mol)
<em>Mass of Chromium metal = 13.79 g</em>
PH and conductivity have no common rekationship
Problem One (left)
This is just a straight mc deltaT question
<em><u>Givens</u></em>
m = 535 grams
c = 0.486 J/gm
tf = 50
ti = 1230
Formula
E = m * c * (ti - tf)
Solution
E = 535 * 0.486 * ( 1230 - 50)
E = 535 * 0.486 * (1180)
E = 301077
Answer: A
Problem Two
This one just requires that you multiply the two numbers together and cut it down to 3 sig digits.
E = H m
H = 2257 J/gram
m = 11.2 grams
E = 2257 * 11.2
E = 25278 to three digits is 25300 Joules. Anyway it is the last one.
Three
D and E are both incorrect for the same reason. The sun and stars don't contain an awful lot of Uranium (1 part of a trillion hydrogen atoms). It's too rare. The other answers can all be eliminated because U 235 is pretty stable in its natural state. It has a high activation complex.
Your best chance would be enriched Uranium (which is another way of saying refined uranium). That would be the right environment. Atomic weapons and nuclear power plants (most) used enriched Uranium. You can google "Little Boy" if you want to know more.
Answer: B
Four
The best way to think about this question is just to get the answer. Answer C.
A: incorrect. Anything sticking together implies a larger and larger result. Gases don't work that way. They move about randomly.
B: Wrong. Heat and Temperature especially depend on movement. Stopping is not permitted. If a substance's molecules stopped, the substance would experience an extremely uncomfortable temperature drop.
C: is correct because the molecules neither stop nor do they stick. The hit and move on.
D: Wrong. An ax splitting something? That is not what happens normally and not with ordinary gases. It takes more energy that mere collisions or normal temperatures would provide to get a gas to split apart.
E: Wrong. Same sort of comment as D. Splitting is not the way these things work. They bounce away as in C.
Five
Half life number 1 would leave 0.5 grams behind.
Half life number 2 would leave 1/2 of 1/2 or 1/4 of the number of grams left.
Answer: 0.25
Answer C
Answer:
The farthest the vehicle could travel (if it gets 20.0 miles per gallon on liquid gasoline) is 1.62 miles.
Explanation:
The automobile gas tank has a volume capacity of 15 gallons which can be converted to liters: 15 × 3.7854 = 56.781 liters
We can find the moles of gasoline by using the ideal gas equation: PV = nRT.
Make n (number of moles) the subject of the formula: n = PV/RT, where:
P = 747 mmHg
V = 56.781 liters
R (universal gas constant) = 0.0821 liter·atm/mol·K
T = 25 ∘C = (273 + 25) K = 298 K
1 atm (in the unit of R) = 760 mmHg
Therefore n = 747 × 56.781/(0.0821 × 760 × 298) = 2.281 mol.
Given that the molar mass of the gasoline = 101 g/mol,
the mass of gasoline = n × molar mass of gasoline = 2.281 mol × 101 g/mol = 230.38 g
the density of the liquid gasoline = 0.75 g/mL
In order to calculate the distance the vehicle can travel, we have to calculate volume of gasoline available = mass of the liquid gasoline ÷ density of liquid gasoline
= 230.38 g ÷ 0.75 g/mL = 307.17 mL = 0.3071 liters = 0.3071 ÷ 3.7854 = 0.0811 gallons
since the vehicle gets 20.0 miles per gallon on liquid gasoline, the distance traveled by the car = gallons available × miles per gallon = 0.0811 × 20 = 1.62 miles.
<span>Quarks are present in protons and neutrons but not in electrons.
Quarks are sub-atomic particles that have mass, but not an integer of charge.
Protons and neutrons are made up of quarks, but electrons are not since they are energy travelling with a charge of energy, not matter with mass. Quarks have mass, therefore cannot be in electrons.</span>