1) Calcium carbonate contains 40.0% calcium by weight.
M(CaCO₃)=100.1 g/mol
M(Ca)=40.1 g/mol
w(Ca)=40.1/100.1=0.400 (40.0%)!
2) Mass fraction of this is excessive data.
3) The solution is:
m(Ca)=1.2 g
m(CaCO₃)=M(CaCO₃)*m(Ca)/M(Ca)
m(CaCO₃)=100.1g/mol*1.2g/40.1g/mol=3.0 g
1.5 metres is the length of the tape. Hope this helps :)
Mass of lead (II) chromate is 51 g. The molecular formula is
and its molar mass is 323.2 g/mol
Number of moles can be calculated using the following formula:

Here, m is mass and M is molar mass.
Putting the values,

Therefore, number of moles of lead (II) chromate will be 0.1578 mol.
Explanation:
It is known that efficiency is denoted by
.
The given data is as follows.
= 0.82,
= (21 + 273) K = 294 K
= 200 kPa,
= 1000 kPa
Therefore, calculate the final temperature as follows.
0.82 =
= 1633 K
Final temperature in degree celsius =
= 
Now, we will calculate the entropy as follows.

For 1 mole, 
It is known that for
the value of
= 0.028 kJ/mol.
Therefore, putting the given values into the above formula as follows.

= 
= 0.0346 kJ/mol
or, = 34.6 J/mol (as 1 kJ = 1000 J)
Therefore, entropy change of ammonia is 34.6 J/mol.
The First Ionization energy of Nitrogen is greater (Not smaller)than that of Phosphorous. This is because going down the group (N and P are in same group) the number of shells increases, the distance of valence electrons from Nucleus increases and hence due to less interaction between nucleus and valence electrons it becomes easy to knock out the electron.
<span>The second ionization energy of Na is larger than that of Mg because after first loss of electron Na has gained Noble Gas Configuration (Stable Configuration) and now requires greater energy to loose both second electron and Noble Gas Configuration. While Mg after second ionization attains Noble Gas Configuration hence it prices less energy.</span>