Answer:
Explanation:
Fe⁺² (aq) + 2e⁻ = Fe (s) ; E⁰ = - .44 V
Fe⁺³ (aq) + e⁻ = ® Fe²⁺ (aq) ; E⁰ = + .77 V
Reduction potential of second reaction is more , so it will take place , ie Fe⁺³ will be reduced and Fe will be oxidised .
So reaction in the combined cell will be
2Fe⁺³ + Fe = 3Fe⁺²
cell potential = .77 - ( - .44 )
= 1.21 V .
Using charles law
v1/t1=v2/t2
v1=49ml
v2=74
t1=7+273=280k
t2=?
49/280=74/t2
0.175=74/t2 cross multiply
0.175t2=74
t2=74/0.175
t2=422k or 149celcius
Answer:
Both reaction A and reaction B are non spontaneous.
Explanation:
For a spontaneous reaction, change in gibbs free energy (
) should be negative.
We know,
, where T is temperature in Kelvin scale.
Reaction A: 
As
is positive therefore the reaction is non-spontaneous.
If at a temperature T K , the reaction is spontaneous then-

or, 
or, 
or, 
So at a temperature greater than 350 K, the reaction is spontaneous.
Reaction B: 
As
is positive therefore the reaction is non-spontaneous.
If at a temperature T K , the reaction is spontaneous then-

or, 
or, 
or, 
So at a temperature greater than -16 K, the reaction is spontaneous.
Answer:
a. the maximum number of σ bonds that the atom can form is 4
b. the maximum number of p-p bonds that the atom can form is 2
Explanation:
Hybridization is the mixing of at least two nonequivalent orbitals, in this case, we have the mixing of one <em>s, 3 p </em> and <em> 2 d </em> orbitals. In hybridization the number of hybrid orbitals generated is equal to the number of pure atomic orbital, so we have 6 hybrid orbital.
The shape of this hybrid orbital is octahedral (look the attached image) , it has 4 orbital located in the plane and 2 orbital perpendicular to it.
This shape allows the formation of maximum 4 σ bond, because σ bonds are formed by orbitals overlapping end to end.
And maximum 2 p-p bonds, because p-p bonds are formed by sideways overlapping orbitals. The atom can form one with each one of the orbitals located perpendicular to the plane.
Answer:
Another view could be from this definition: (Electron Sea Model) : The metallic bond consists of a series of metals atoms that have all donated their valence electrons to an electron cloud that permeates the structure. This electron cloud is frequently referred to as an electron sea. It might help to visualize the electron sea model as if it were a box of marbles that are surrounded by water. The marbles represent the metal atoms and the water represents the electron sea.
Explanation: