Answer:
H+/H3O , H2O
Explanation:
The ability to be a proton donor is the Bronsted-Lowry definition of acids. The Lewis definition of an acid is an electron pair acceptor, which covers molecules liKE BF3
The ability to accept a pair of electrons is what is common to all acids, not the ability to be a proton donor.
All acid solutions contain hydronium ions (H3O+), hydroxide ions (OH-) and water molecules. Each different acid solution will then have an anion that is exclusive to that acid. For example, hydrochloric acid solution will contain all of the above and chloride ions (Cl-).
All acids contain the acidic substance dissolved in water. Water naturally dissociates to a small amount, creating hydronium and hydroxide ions. But most of the water remains as water molecules.
Then when we add an acid, like HCl, the oxygen on the water attracts the hydrogen from the HCl. The electrons in the covalent bond remain with the chlorine, giving it a negative charge and thus it becomes the chloride ion (Cl-). The hydrogen now has a positive charge and as said before, is attracted to the water (specifically the lone pair of electrons on the oxygen) to create hydronium ions.
This creates extra hydronium ions, making the solution acidic. But remember, there are still water molecules, hydroxide ions and the negative ion all in solution for all acids.
Answer:
334J/g
Explanation:
Data obtained from the question include:
Mass (m) = 1g
Specific heat of Fusion (Hf) = 334 J/g
Heat (Q) =?
Using the equation Q = m·Hf, we can obtain the heat released as follow:
Q = m·Hf
Q = 1 x 334
Q = 334J
Therefore, the amount of heat released is 334J
S, sulfur does not have a noble gas electron.
Answer: 
Explanation:
The balanced chemical equation :
To calculate the moles, we use the equation:

According to stoichiometry:
4 moles of
produces = 902.0 kJ of energy
415.1 moles of
produces =
of energy
Thus the change in enthalpy is 
Answer:

Explanation:
Hello,
In this case, in terms of the heat, mass, heat capacity and change in temperature, we can analyze thermal changes as:

In such a way, we compute the required change in temperature as shown below:

Such change in temperature is positive indicating an increase in the temperature as the involved heat is positive, in means that heat was added to increase the temperature.
Best regards.