The molarity of KBr solution is 1.556 M
molarity is defined as the number of moles of solute in volume of 1 L solution.
the number of KBr moles in 1 L - 1.556 mol
Therefore in 200.0 L - 1.556 mol/L x 200.0 L = 311.2 mol
Molar mass of KBr - 119 g/mol
mass of Kbr - 311.2 mol x 119 g/mol = 37 033 g
mass of solute therefore is 37.033 kg
Answer:
Concentration of sulfuric acid in the acid rain sample is 0.0034467 mol/L.
Explanation:
Volume of NaOH = 1.7 ml = 0.0017 L
Molarity of NaOH = 0.0811 M
Moles of NaOH = n
n = 0.0001378 mol

According to reaction, 2 mol of NaOH neutralize 1 mol of sulfuric acid.
Then 0.0001378 mol of NaOH will neutralize:
of sulfuric acid.
Concentration of sulfuric acid in the acid rain sample: x

Concentration of sulfuric acid in the acid rain sample is 0.0034467 mol/L.
The correct answer is that 1.125 mol of NaOH is available, and 60.75 g of FeCl₃ can be consumed.
The mass of NaOH is 45 g
The molar mass of NaOH = 40 g/mol
The moles of NaOH = mass / molar mass
= 45 / 40
= 1.125
Thus, 1.125 mol NaOH is available
3 NaOH + FeCl₃ ⇒ Fe (OH)₃ + 3NaCl
3 mol of NaOH react with 1 mol of FeCl₃
1.125 moles of NaOH will react with x moles of FeCl₃
x = 1.125 / 3
x = 0.375 mol
0.375 mol FeCl₃ can take part in reaction
The molar mass of FeCl₃ is 162 g/mol
The mass of FeCl₃ = moles × mass
= 0.375 × 162
= 60.75 g
Thus, the amount of FeCl₃, which can be consumed is 60.75 g
<span>The elements in a Periodic Table are grouped according to their classifications. The major classifications are Metals, Non-metals, and Metalloids. Their level of reactivity can be gauged by simply looking at their position in the table. For Metals, their reactivity increases as you move to the left then going down. Non-metal reactivity increases as you move to the right then going up, starting at the bottom of the table.</span>
Looking at this equation P= (pa*pb)/ (pa+(pb-pa)) ya where pa=vap press a and ya= vap composition a and P= total pressure,it relates vapor pressure mixture to vapor composition. This is derived using the combination of Dalton's and Raoult's laws.