The reaction formula of this is C3H8 + 5O2 --> 3CO2 + 4H2O. The ratio of mole number of C3H8 and O2 is 1:5. 0.025g equals to 0.025/44.1=0.00057 mole. So the mass of O2 is 0.00057*5*32=0.0912 g.
Answer:
Number of moles nitric acid in the cylinder is 400.539g/mol.
Explanation:
From the given,
Weight of empty gas cylinder
= 30.01 g/mol
Number of moles nitric acid =
=?
The mass of nitric acid in the cylinder = 

Number of moles of nitric acid =

Therefore, number of moles nitric acid in the cylinder is 400.539g/mol.
The trick for this problem is to understand atomic mass: the fact that different atoms have different masses. What we need to do is add up all the atomic masses of the compound and work out the ratio of mass of water to the mass of sodium carbonate. Atomic masses are often given for each atom in the periodic table, but you can look them up on google too.
You can do this by adding up individual atoms for each molecule, or you can shortcut and lookup the molar mass of the compound (i.e.the task already done for you).
The molar mass of water is 18.01g/mole so for 10 moles of water we have a mass of 180.1g.
The molar mass of sodium carbonate is 106g/mole (google).
So the total mass of the sodium carbonate decahydrate compound is 180.1+106 = 286.1g, of which water would make up 180.1g, so the percentage of water is is 180.1/286.1 = 0.629, so we can round this to 63%
:)
Answer:
Mass = 6.183 g
Solution:
Step 1: Calculate number of moles of Boric acid using following formula,
Molarity = Moles ÷ Volume
Solving for Moles,
Moles = Molarity × Volume
Putting Values,
Moles = 0.05 mol.L⁻¹ × 2.0 L
Moles = 0.1 mol
Step 2: Calculate Mass of Boric Acid using following formula,
Moles = Mass ÷ M.mass
Solving for Mass,
Mass = Moles × M.mass
Putting values,
Mass = 0.1 mol × 61.83 g.mol⁻¹
Mass = 6.183 g
Flask used to prepare this solution is called as Volumetric flask. Take 2 L volumetric flask, add 6.183 g of Boric acid and fill it to the mark with distilled water.