Answer:
The mass of the solute and the volume of the solution.
Explanation:
Hello,
In this case, given the formula of molarity:

In such a way, since the moles could not be directly measured, we must measure the mass of the solute and by using its molar mass, one could compute its moles. Moreover, since the solution is composed by the solvent (typically water) and the solute, we consequently must measure the volume of the solution needed for the preparation of such concentration-known solution. In such a way, we can actually prepare the required solution.
Best regards.
(46x8.0)+(47x7.8)+(48x73.4)+(49x5.5)+(50x5.3) = 4792.3
4792.3/100 = 47.923 this is the average atomic mass of Titanium
Answer:
x = 2+
Explanation:
1) FADH2 + Q => FAD + QH2
Since H is added to Q
=> Reactant reduced is Q
(2) Balancing charges on both sides of the equation gives:
QH2 + 2 cyt c(Fe3+) => Q + 2 cyt c(Fe2+) + 2 H+
Thus x = 2+
Answer:
1.8 × 10⁻¹⁶ mol
Explanation:
(a) Calculate the solubility of the Sr₃(PO₄)₂
Let s = the solubility of Sr₃(PO₄)₂.
The equation for the equilibrium is
Sr₃(PO₄)₂(s) ⇌ 3Sr²⁺(aq) + 2PO₄³⁻(aq); Ksp = 1.0 × 10⁻³¹
1.2 + 3s 2s
![K_{sp} =\text{[Sr$^{2+}$]$^{3}$[PO$_{4}^{3-}$]$^{2}$} = (1.2 + 3s)^{3}\times (2s)^{2} = 1.0 \times 10^{-31}\\\text{Assume } 3s \ll 1.2\\1.2^{3} \times 4s^{2} = 1.0 \times 10^{-31}\\6.91s^{2} = 1.0 \times 10^{-31}\\s^{2} = \dfrac{1.0 \times 10^{-31}}{6.91} = 1.45 \times 10^{-32}\\\\s = \sqrt{ 1.45 \times 10^{-32}} = 1.20 \times 10^{-16} \text{ mol/L}\\](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BSr%24%5E%7B2%2B%7D%24%5D%24%5E%7B3%7D%24%5BPO%24_%7B4%7D%5E%7B3-%7D%24%5D%24%5E%7B2%7D%24%7D%20%3D%20%281.2%20%2B%203s%29%5E%7B3%7D%5Ctimes%20%282s%29%5E%7B2%7D%20%3D%20%201.0%20%5Ctimes%2010%5E%7B-31%7D%5C%5C%5Ctext%7BAssume%20%7D%203s%20%5Cll%201.2%5C%5C1.2%5E%7B3%7D%20%5Ctimes%204s%5E%7B2%7D%20%3D%201.0%20%5Ctimes%2010%5E%7B-31%7D%5C%5C6.91s%5E%7B2%7D%20%3D%201.0%20%5Ctimes%2010%5E%7B-31%7D%5C%5Cs%5E%7B2%7D%20%3D%20%5Cdfrac%7B1.0%20%5Ctimes%2010%5E%7B-31%7D%7D%7B6.91%7D%20%3D%201.45%20%5Ctimes%2010%5E%7B-32%7D%5C%5C%5C%5Cs%20%3D%20%5Csqrt%7B%201.45%20%5Ctimes%2010%5E%7B-32%7D%7D%20%3D%201.20%20%5Ctimes%2010%5E%7B-16%7D%20%5Ctext%7B%20mol%2FL%7D%5C%5C)
(b) Concentration of PO₄³⁻
[PO₄³⁻] = 2s = 2 × 1.20× 10⁻¹⁶ mol·L⁻¹ = 2.41× 10⁻¹⁶ mol·L⁻¹
(c) Moles of PO₄³⁻
Moles = 0.750 L × 2.41 × 10⁻¹⁶ mol·L⁻¹ = 1.8 × 10⁻¹⁶ mol
There are 18 Elements in the fifth period.