Answer : The final temperature of the solution in the calorimeter is, 
Explanation :
First we have to calculate the heat produced.

where,
= enthalpy change = -44.5 kJ/mol
q = heat released = ?
m = mass of
= 1.52 g
Molar mass of
= 40 g/mol

Now put all the given values in the above formula, we get:


Now we have to calculate the final temperature of solution in the calorimeter.

where,
q = heat produced = 1.691 kJ = 1691 J
m = mass of solution = 1.52 + 35.5 = 37.02 g
c = specific heat capacity of water = 
= initial temperature = 
= final temperature = ?
Now put all the given values in the above formula, we get:


Thus, the final temperature of the solution in the calorimeter is, 
The balloon will reach its maximum volume and it will burst.
Given:
- A weather balloon at sea level, with gas at 65.0 L volume, 745 Torr pressure, and 25C temperature.
- When the balloon was taken to an altitude at which temperature was 25C and pressure was 0.066atm its volume expanded.
- The maximum volume of the weather balloon is 835 L.
To find:
Whether the weather balloon will reach its maximum volume or not.
Solution:
The pressure of the gas in the weather balloon at sea level = 

The volume of the weather balloon at sea level = 
The temperature of the gas in the weather balloon at sea level:

The balloon rises to an altitude.
The pressure of the gas in the weather balloon at the given altitude:

The volume of the weather balloon at the given altitude = 
The temperature of the gas in the weather balloon at the given altitude:

Using the Combined gas law:

The maximum volume of the weather balloon= V = 835 L

The volume of the weather balloon at a given altitude is greater than its maximum volume which means the balloon will reach its maximum volume and it will burst.
Learn more about the combined gas law:
brainly.com/question/13154969?referrer=searchResults
brainly.com/question/936103?referrer=searchResults
Answer:
Atomic mass = 127.198 amu
Explanation:
The average atomic mass is obtained by summing the masses of the isotopes each multiplied by its abundance.
Atomic mass = (97.62 * 0.0825) + (109.3 * 0.2671) + (138.3 * 0.6504)
Atomic mass = 8.05365 + 29.19403 + 89.95032
Atomic mass = 127.198 amu
Answer:
<h3>The answer is option B</h3>
Explanation:
The pH of a solution can be found by using the formula
pH = - log [ H+ ]
To find the hydrogen ion concentration substitute the pH into the above formula and solve for the [ H+ ]
From the question
pH = 4.25
So we have
4.25 = - log [ H+ ]
<u>Find the antilog of both sides</u>
That's
<h3>
![[ H+ ] = {10}^{ - 4.25}](https://tex.z-dn.net/?f=%5B%20H%2B%20%5D%20%3D%20%20%7B10%7D%5E%7B%20-%204.25%7D%20)
</h3>
We have the final answer as
<h2>
![[ H+ ] = 5.6 \times {10}^{ - 5} \: M](https://tex.z-dn.net/?f=%5B%20H%2B%20%5D%20%3D%205.6%20%5Ctimes%20%20%7B10%7D%5E%7B%20-%205%7D%20%20%5C%3A%20M)
</h2>
Hope this helps you
Answer:
Mass of Ca in sample, Mass of Br in sample, Number of moles of Ca in sample, Number of moles of Br in sample, Mass or moles of element other than Ca or Br in sample
Explanation:
The AP Classroom will not count your answer to this question as correct unless it includes at least one of the answers listed above. If you say that theanswer to this question is density, it will be marked as incorrect, I found that out the hard way when I used the answers that brainly gave me.
Good luck,
I applaud you for using the sources avalible to you, which is /definetly not/ cheeting.