The problem talks about two questions and these are:
1. Metals are very good conductors of electricity and heat. Directing heat is easier. So let Marie heat the beads and also have heat another substance, for instance, water. If the beads heat quicker, then they are metals. Another test to conduct is called flame test. This test should give you a colored flame (blue/white for lead) the metal is lead if the reaction is: 2PbO+C ==> 2Pb +CO2
2. The beads are possibly to be lead since Ferrous(lead) oxide + carbon = carbon dioxide + lead
<h3>Answer:</h3>
Formal Charge on Nitrogen is "Zero".
<h3>Explanation:</h3>
Formal Charge on an atom in molecules is calculated using following formula;
Formal Charge = [# of Valence e⁻s] - [e⁻s in lone pairs + 1/2 # of Bonding e⁻s]
As shown in attached picture of Hydroxylamine, Nitrogen atom is containing two electrons in one lone pair of electrons and six electrons in three single bonds with two hydrogen and one oxygen atom respectively.
Hence,
Formal Charge = [5] - [2 + 6/2]
Formal Charge = [5] - [2 + 3]
Formal Charge = 5 - 5
Formal Charge = 0 (zero)
Hence, the formal charge on nitrogen atom in hydroxylamine is zero.
Elements present in group 18 are known as noble gases. The outermost shell of these elements are completely filled.
18 is the answer
We are tasked to solve for the volume of the gas that occupies when pressure and temperature changes to 400 Torr and 200 Kelvin from Torr and 400 Kelvin. We can use ideal gas law assuming constant gas composition and close system. The solution is shown below:
P1V1 / T1 = P2V2 / T2
V2 = P1V1T2 / T1P2
V2 = 800*72*200 / 400*400
V2 = 72 ml
The answer for the volume is 72 ml.
Answer:
Doping with galium or indium will yield a p-type semiconductor while doping with arsenic, antimony or phosphorus will yield an n-type semiconductor.
Explanation:
Doping refers to improving the conductivity of a semiconductor by addition of impurities. A trivalent impurity leads to p-type semiconductor while a pentavalent impurity leads to an n-type semiconductor.