answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Monica [59]
2 years ago
12

How many molecules are there in 79g of Fe2O3? how many atoms is this?

Chemistry
1 answer:
Leya [2.2K]2 years ago
4 0
There are approximately 160 grams in 1 mol of Fe2O3 molecules. Therefore, there would be 79/160= 0.49375 mols of Fe2O3 molecules in 79 grams. There are 5 atoms in total for each molecule of Fe2O3, therefore 79/160 * 5 = 79/32 = 2.46875 mols of atoms.
You might be interested in
If 0.640 g of beautiful blue crystals of azulene is dissolve in 99 g of benzen, the resulting solutions boils at 80.23 degrees c
devlian [24]

This problem handles<em> boiling-point elevation</em>, which means we will use the formula:

ΔT = Kb * m

Where ΔT is the difference of Temperature between boiling points of the solution and the pure solvent (Tsolution - Tsolvent). Kb is the ebullioscopic constant of the solvent (2.64 for benzene), and m is the molality of the solution.

Knowing that benzene's boiling point is 80.1°C, we <u>solve for m</u>:

Tsolution - Tsolvent = Kb * m

80.23 - 80.1 = 2.64 * m

m = 0.049 m

We use the definition of molality to <u>calculate the moles of azulene</u>:

0.049 m = Xmoles azulene / 0.099 kgBenzene

Xmoles azulene = 4.87 x10⁻³ moles azulene

We use the mass and the moles of azulene to<u> calculate its molecular weight</u>:

0.640 g / 4.875 x10⁻³ mol = 130.28 g/mol

<em>A molecular formula that would fulfill that molecular weight</em> is C₁₀H₁₀. So that's the result of solving this problem.

The actual molecular formula of azulene is C₁₀H₈.

6 0
2 years ago
(a) At what substrate concentration would an enzyme with a kcat of 30.0 s−1 and a Km of 0.0050 M operate at one-quarter of its m
Dmitrij [34]

The missing graph is in the attachment.

Answer: (a) [S] = 0.0016M

              (b) Vmax = 3V; Vmax = \frac{3V}{2}; Vmax = \frac{11V}{10}

              (c) Enzyme A: black graph; Enzyme B = red graph

Explanation: <u>Enzyme</u> is a protein-based molecule that speed up the rate of a reaction. <u><em>Enzyme</em></u><em> </em><u><em>Kinetics</em></u> studies the reaction rates of it.

The relationship between substrate and rate of reaction is determined by the <u>Michaelis-Menten</u> <u>Equation</u>:

<u />V=\frac{V_{max}[S]}{K_{M}+[S]}<u />

in which:

V is initial velocity of reaction

Vmax is maximum rate of reaction when enzyme's active sites are saturated;

[S] is substrate concentration;

Km is measure of affinity between enzyme and its substrate;

(a) To determine concentration:

0.25V_{max}=\frac{V_{max}[S]}{0.005+[S]}<u />

<u />0.25V_{max}(0.005+[S])=V_{max}[S]<u />

<u />0.00125+0.25[S]=[S]<u />

0.75[S] = 0.00125

[S] = 0.0016M

For a Km of 0.005M, substrate's concentration is 0.0016M.

(b) Still using Michaelis-Menten:

<u />V=\frac{V_{max}[S]}{K_{M}+[S]}<u />

Rearraging for Vmax:

V_{max}=\frac{V(K_{M}+[S])}{[S]}

(b-I) for [S] = 1/2Km

V_{max}=\frac{V(K_{M}+0.5K_{M})}{0.5K_{M}}

V_{max}=\frac{V(1.5K_{M})}{0.5K_{M}}

V_{max}= 3V

(b-II) for [S] = 2Km

V_{max}=\frac{V(K_{M}+2K_{M})}{2K_{M}}

V_{max}=\frac{V(3K_M)}{2K_M}

V_{max}=\frac{3V}{2}

(b-III) for [S] = 10Km

V_{max}=\frac{V(K_{M}+10K_M)}{10K_M}

V_{max}=\frac{V(11K_{M})}{10K_{M}}

V_{max}=\frac{11V}{10}

(c) Being the affinity between enzyme and substrate, the lower Km is the less substrate is needed to reach half of maximum velocity.

Km of enzyme A is 2μM and of enzyme B is 0.5μM.

Enzyme B has lower Km than enzyme A, which means the first will need a lower concnetration of substrate to reach half of Vmax.

Analyzing each plot, notice that the red-coloured graph reaches half at a lower concentration, therefore, red-coloured plot is for enzyme B, while black-coloured plot is for enzyme A

<u />

3 0
2 years ago
36g of KOH dissolved in 800mL of water. What is the molality of the solution?
Bad White [126]

Answer:

0.80m of KOH

Explanation:

Molality is an unit of concentration defined as the ratio between moles of solute and kg of solvent.

In the problem, the solute is KOH and solvent is water.

Moles of 36g KOH -Molar mass: 56.1g/mol- are:

36g KOH × (1mol / 56.1g) = <em>0.642 moles of KOH</em>

<em></em>

Now, as density of water is 1g/mL, mass of 800mL of water is:

800mL × (1g / mL) × (1kg / 1000g) = <em>0.800kg of water</em>

<em></em>

Thus, molality is:

0.642moles of KOH / 0.800kg = <em>0.80m of KOH</em>

5 0
2 years ago
Item 5 A solution of methanol, CH3OH, in water is prepared by mixing together 128 g of methanol and 108 g of water. The mole fra
Basile [38]

Answer:

Mole fraction of methanol will be closest to 4.

Explanation:

Given, Mass of methanol = 128 g

Molar mass of methanol = 32.04 g/mol

The formula for the calculation of moles is shown below:

moles = \frac{Mass\ taken}{Molar\ mass}

Thus,

Moles= \frac{128\ g}{32.04\ g/mol}

Moles\ of\ methanol = 3.995\ mol

Given, Mass of water = 108 g

Molar mass of water = 18.0153 g/mol

The formula for the calculation of moles is shown below:

moles = \frac{Mass\ taken}{Molar\ mass}

Thus,

Moles= \frac{108\ g}{18.0153\ g/mol}

Moles\ of\ water= 5.995\ mol

So, according to definition of mole fraction:

Mole\ fraction\ of\ methanol=\frac {n_{methanol}}{n_{methanol}+n_{water}}

Mole\ fraction\ of\ methanol=\frac{3.995}{3.995+5.995}=0.39989

<u>Mole fraction of methanol will be closest to 4.</u>

5 0
2 years ago
Which of these statements is not necessarily true for two objects in thermal equilibrium?
Dmitrij [34]

1. Answer: C. The objects' temperatures have both changed by the same amount.

Explanation:

An object is said to be in thermal equilibrium when the objects have attained same temperature. Heat transfer from hotter object to colder one in contact takes place until the temperature of the two are equal. It is not necessary that the temperature of both the objects changes by same amount. After attainment of thermal equilibrium, the temperature of the objects stop changing and the tiny particles of the object move at the same rate.

Hence, the objects' temperatures have both changed by the same amount. is not necessarily true for two objects in thermal equilibrium.

2. Answer: C. Objects are made of tiny particles, and their motion depends on the temperature.

Explanation:

Kinetic theory of heat states that the kinetic energy of constituent particles determine the temperature of the object. The statement that best explains this is Objects are made of tiny particles, and their motion depends on the temperature.

5 0
2 years ago
Other questions:
  • Why is it important to ensure that treated water remains safe to drink when it is stored after treatment? what is one way to mak
    5·1 answer
  • Using electron configurations, explain why the halogens readily react with the alkali metals to form salts
    6·1 answer
  • Compare and contrast the outer core and the inner core.
    8·2 answers
  • Balance the following reaction. A coefficient of "1" is understood. Choose option "blank" for the correct answer if the coeffici
    11·2 answers
  • Why does blowing carbon dioxide gas into aqueous barium hydroxide reduce?
    8·2 answers
  • The standard cell potential (E°cell) for the reaction below is +0.63 V. The cell potential for this reaction is ________ V when
    16·1 answer
  • The mole fraction of oxygen molecules in dry air is 0.2095. What volume of dry air at 1.00 atm and 25°C is required for burning
    9·1 answer
  • The force of gravity between a planet and its moon is 371 N. If the planet has a mass of 4*10^ 22 kg and the moon has a mass of
    12·1 answer
  • A change in the state of matter is caused if enough _____ is added to or removed from an object.​
    13·1 answer
  • In 2021, you were given a 100. g wine sample to verify its age. Using tritium dating you observe that the sample has 0.688 decay
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!