Answer:
A --- (E)-oct-2-en-1-o1
B ----(E)-oct-2-enal
Explanation:
See the attached file for the structure.
Answer:
44 g
Explanation:
The formula for the number of moles (n) is equal to
.
Since we need to find the mass, we derive it from the formula of the number of moles and we get that mass = n x molecular weight .
The molecular weight of
= 12 g/mol (from the carbon) + 19x4 g/mol (from the 4 fluorine atoms)= 88 g/mol
We plug in the numbers in the derived formula for the mass and we get :
mass = n x molecular weight = 0.5 mol x 88 g/mol = 44 g
HBr reacts with LiOH and forms LiBr and H₂O as the products. The balanced reaction is
LiOH(aq) + HBr(aq) → LiBr(aq) + H₂O(l)
Molarity (M) = moles of solute (mol) / volume of the solution (L)
Molarity of LiOH = 0.205 M
Volume of LiOH = 29.15 mL = 29.15 x 10⁻³ L
Hence,
moles of LiOH = molarity x volume of the solution
= 0.205 M x 29.15 x 10⁻³ L
= 5.97575 x 10⁻³ mol
The stoichiometric ratio between LiOH and HBr is 1 : 1.
Hence,
moles of HBr in 25.0 mL = moles of LiOH added
= 5.97575 x 10⁻³ mol
Hence, molarity of HBr = 5.97575 x 10⁻³ mol / 25.00 x 10⁻³ L
= 0.23903 M
≈ 0.239 M
Hence, the molarity of the HBr is 0.239 M.
Answer:
<h2>The answer is 1.48 L</h2>
Explanation:
In order to find the original volume we use the same for Boyle's law which is

where
P1 is the initial pressure
P2 is the final pressure
V1 is the initial volume
V2 is the final volume
Since we are finding the original volume

From the question
P1 = 172 kPa = 172000 Pa
P2 = 85 kPa = 85000 Pa
V2 = 3 L
We have

We have the final answer as
<h3>1.48 L</h3>
Hope this helps you
Answer:
I'm feeling nice today so heres the answer
Explanation:
In the portion of the cell membrane shown in the diagram, the arrow indicates the process of active transport.
Explanation:
Active transport is one of the mechanisms of transmembrane transport, which involves the use of energy. The diagram (see image) shows the hydrogen (H⁺) output from the cytoplasm to the extracellular space, through an H⁺ pump —consuming ATP— which represents an active transport process.
The hydrophobic nature of the cell membrane prevents the free passage of hydrosoluble elements or ions, as H⁺, so they require the use of active transport to pass through it.
The other options presented are not correct, because
Respiration is a process that occurs in the mitochondria.
Diffusion is a passive transport process that does not require energy.
Cellular recognition depends on membrane proteins that act as specific receptors.