Weather can be predicted only as probable, not definite because the daily weather conditions depends on winds and storms.
It is common observation that weather forecasts are often given as a probability and never in definite terms.
This is because, the weather condition at anytime depends on the temperature of the earth's atmosphere which causes air masses to move leading to wind.
The temperature of the earth's atmosphere changes frequently hence weather conditions also change frequently.
Learn more: brainly.com/question/21209813
<span>Percentage
by mass is the amount in mass of a component in a mixture per 100 unit of mass of the
total mixture. Percentage by mass is the same as %w/w. We can determine this by dividing the mass of the solute with the total mass of the mixture. However, from the problem statement, we are given the volume of the water so there is a need to convert this value to mass by using the density of water. We calculate as follows:
Mass of solution = 100 mL (0.99993 g/mL) water + 25 g EtOH
Mass of solution = 124.993 g solution
%w/w = 25 g / 124.993 g x100
%w/w = 20% of EtOH</span>
As number of gaseous moles in reactant and prodict are same that is 4
So No change will occur
Here we have to calculate the heat required to raise the temperature of water from 85.0 ⁰F to 50.4 ⁰F.
10.857 kJ heat will be needed to raise the temperature from 50.4 ⁰F to 85.0 ⁰F
The amount of heat required to raise the temperature can be obtained from the equation H = m×s×(t₂-t₁).
Where H = Heat, s =specific gravity = 4.184 J/g.⁰C, m = mass = 135.0 g, t₁ (initial temperature) = 50.4 ⁰F or 10.222 ⁰C and t₂ (final temperature) = 85.0⁰F or 29.444 ⁰C.
On plugging the values we get:
H = 135.0 g × 4.184 J/g.⁰C×(29.444 - 10.222) ⁰C
Or, H = 10857.354 J or 10.857 kJ.
Thus 10857.354 J or 10.857 kJ heat will be needed to raise the temperature.
<span>When an ice cube is placed on a kitchen counter, heat will flow from the ice cube to the counter, causing the molecules in the counter to move more slowly. The molecules of the counter move more slowly because the heat transferred to them from the ice has reduced their kinetic energy.</span>