Answer: Option (A) is the correct answer.
Explanation:
Newton's third law states that when one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body.
In short we can say that every action has an equal and opposite reaction.
For example, when we hit a wooden table hardly with our hands then we are applying a force on the table and on the other hand table is applying a force in the opposite direction on our hand due to which we get hurt.
Therefore, when force of gravity pulls the man in downward direction then man pulling upward on the earth is applying a force in opposite direction of gravitational pull.
Answer:
Zero
Explanation:
FrBr is an ionic compound
.
Fr is in Group 1. Br is in Group 17.
The charges on the ions are +1 and -1, respectively.
The compound consists of Fr⁺Br⁻ ions.
However, there are equal numbers of + and - charges, so
The overall charge of the compound is zero.
Answer:
D
Explanation:
This explains how two noble gases molecules can have an attractive force between them.
This force is called as van dar Waals forces.
It plays a fundamental role in fields in as diverse as supramolecular chemistry structural biology .
If no other forces are present, the point at which the force becomes repulsive rather than attractive as two atoms near one another is called the van der Waals contact distance. This results from the electron clouds of two atoms unfavorably coming into contact.[1] It can be shown that van der Waals forces are of the same origin as the Casimir effect, arising from quantum interactions with the zero-point field.[2] The resulting van der Waals forces can be attractive or repulsive.[3] It is also sometimes used loosely as a synonym for the totality of intermolecular forces.[4] The term includes the force between permanent dipoles (Keesom force), the force between a permanent dipole and a corresponding induced dipole (Debye force), and the force between instantaneously induced dipoles
Answer:
ΔG°rxn = -72.9 kJ
Explanation:
Let's consider the following reaction.
HCN(g) + 2 H₂(g) → CH₃NH₂(g)
We can calculate the standard Gibbs free energy of the reaction (ΔG°rxn) using the following expression:
ΔG°rxn = ΔH° - T.ΔS°
where,
ΔH° is the standard enthalpy of the reaction
T is the absolute temperature
ΔS° is the standard entropy of the reaction
ΔG°rxn = -158.0 KJ - 387 K × (-219.9 × 10⁻³ J/K)
ΔG°rxn = -72.9 kJ
Answer:

Explanation:
Assuming that temperature is constant
According to Boyle's Law, at constant temperature pressure is inversly proportional to the volume and mathematically it can be expressed as:
..........1




from the first equation after putting all the value
we get,

