Answer : Option C) Atomic Size
Explanation : The atomic radius of the elements is found to be decreasing if we go from left to right in the modern periodic table. Accordingly,
increases as the number of shielding electrons present in the atomic nucleus of the periodic elements which lies in the same row remains constant while the number of protons in each atomic shell increases.
The effective nuclear charge
of an atom is defined as the net positive charge which is felt by the valence electron of the atomic element.
When
is observed to decrease, it is seen that the atomic radius grows in size. So, it explains the inverse relationship between both. This phenomenon occurs, because there is more screening of the electrons from the nucleus taking place, which is observed due to decrease the attraction between the electron and the nucleus.
<u>Answer:</u> The new concentration of lemonade is 3.90 M
<u>Explanation:</u>
To calculate the number of moles for given molarity, we use the equation:
.....(1)
Molarity of lemonade solution = 2.66 M
Volume of solution = 473 mL
Putting values in equation 1, we get:

Now, calculating the new concentration of lemonade by using equation 1:
Moles of lemonade = 1.26 moles
Volume of solution = (473 - 150) mL = 323 mL
Putting values in equation 1, we get:

Hence, the new concentration of lemonade is 3.90 M
Answer:
Explanation:
So basically it just asking you question about that surtain subject .
<u>Given:</u>
Concentration of Ba(OH)2 = 0.348 M
<u>To determine:</u>
pOH of the above solution
<u>Explanation:</u>
Based on the stoichiometry-
1 mole of Ba(OH)2 is composed of 1 mole of Ba2+ ion and 2 moles of OH- ion
Therefore, concentration of OH- ion = 2*0.348 = 0.696 M
pOH = -log[OH-] = - log[0.696] = 0.157
Ans: pOH of 0.348M Ba(OH)2 is 0.157
<span>3.68 x 10²⁵ bromine atoms * 1mol/6.02*10²³ atoms=
= 61.13 mol of bromine atoms
1 mol PBr3 ----- 3 mol Br
x mol PBr3 -----61.13 mol Br
x= 1*61.13/3 = 20.4 mol PBr3.
</span>20.4 mol PBr3 <span>contain 3.68 x 10^25 bromine atoms.</span>