Answer:
A) coenzyme A
Explanation:
The NADH and FADH₂ are the energy rich molecules which are formed in the processes like glycolysis, TCA cycle and the fatty acid oxidation as they contain pair of electrons which have very high transfer potential.
As a result of the energy produced when these molecules transfer their electrons to the oxygen , ATP is generated by a series of electron carriers which collectively is called electron transport chain (ETC).
<u>The components of chain include Fe–S centers, Non-heme, FMN, coenzyme Q, and cytochromes .
</u>
The energy derived from the transfer of electrons is used to pump the protons across mitochondrial membrane.
As a result, an electrochemical gradient is generated which results in some energy which is then harnessed by the ATP synthase to form ATP.
Answer:
Here's what I get
Explanation:
(g) Titration curves
I can't draw two curves on the same graph, but I can draw two separate curves for you.
The graph in part (d) had an equivalence point at 20 mL.
In the second titration, the NaOH was twice as concentrated, so the volume to equivalence point would be half as much — 10 mL.
The two titration curves are below.
(h) Evidence of reaction
HCl and NaOH are both colourless.
They don't evolve a gas or form a precipitate when they react.
The student probably noticed that the Erlenmeyer flask warmed up — a sign of a chemical change.
Answer:
a. 7278 K
b. 4.542 × 10⁻³¹
Explanation:
a.
Let´s consider the following reaction.
N₂(g) + O₂(g) ⇄ 2 NO(g)
The reaction is spontaneous when:
ΔG° < 0 [1]
Let's consider a second relation:
ΔG° = ΔH° - T × ΔS° [2]
Combining [1] and [2],
ΔH° - T × ΔS° < 0
ΔH° < T × ΔS°
T > ΔH°/ΔS°
T > (180.5 × 10³ J/mol)/(24.80 J/mol.K)
T > 7278 K
b.
First, we will calculate ΔG° at 25°C + 273.15 = 298 K
ΔG° = ΔH° - T × ΔS°
ΔG° = 180.5 kJ/mol - 298 K × 24.80 × 10⁻³ kJ/mol.K
ΔG° = 173.1 kJ/mol
We can calculate the equilibrium constant using the following expression.
ΔG° = - R × T × lnK
lnK = - ΔG° / R × T
lnK = - 173.1 × 10³ J/mol / (8.314 J/mol.K) × 298 K
K = 4.542 × 10⁻³¹
Answer : 0.026 moles of oxygen are in the lung
Explanation :
We can solve the given question using ideal gas law.
The equation is given below.

We have been given P = 21.1 kPa
Let us convert pressure from kPa to atm unit.
The conversion factor used here is 1 atm = 101.3 kPa.

V = 3.0 L
T = 295 K
R = 0.0821 L-atm/mol K
Let us rearrange the equation to solve for n.



0.026 moles of oxygen are in the lung
Answer
D 160g
Explanation:
<u>Write the equation:</u>
Combustion reactions use oxygen and release water and heat, so
CH₃OH(g) + O₂(g) → CO₂(g) + H₂O(g)
Balance that:
2CH₃OH(g) + 3O₂(g) → 2CO₂(g) + 4H₂O(g)
<u>Find moles of carbon dioxide:</u>
We need to know the number of moles of CO₂. This rxn is at STP, so at STP one mole of gas = 22.4 liters.
112 L * 1 mol/22.4 L = <em>5 mol CO₂</em>
<u>Find moles of methanol:</u>
Based on the chemical equation, for every 2 mol methanol, there are 2 mol carbon dioxide. So for every 5 mol carbon dioxide, there are 5 mol methanol!
5 mol CO₂ = 5 mol CH₃OH
Molar mass of methanol: 12.01 + 3*1.008 + 16.00 + 1.008 = <em>32.04 g/mol</em>
Moles of methanol: 5 mol * 32.04 g/mol = 160.2 g methanol
≈ 160 mol methanol