The pH of a buffer solution : 4.3
<h3>Further explanation</h3>
Given
0.2 mole HCNO
0.8 mole NaCNO
1 L solution
Required
pH buffer
Solution
Acid buffer solutions consist of weak acids HCNO and their salts NaCNO.
![\tt \displaystyle [H^+]=Ka\times\frac{mole\:weak\:acid}{mole\:salt\times valence}](https://tex.z-dn.net/?f=%5Ctt%20%5Cdisplaystyle%20%5BH%5E%2B%5D%3DKa%5Ctimes%5Cfrac%7Bmole%5C%3Aweak%5C%3Aacid%7D%7Bmole%5C%3Asalt%5Ctimes%20valence%7D)
valence according to the amount of salt anion
Input the value :
![\tt \displaystyle [H^+]=2.10^{-4}\times\frac{0.2}{0.8\times 1}\\\\(H^+]=5\times 10^{-5}\\\\pH=5-log~5\\\\pH=4.3](https://tex.z-dn.net/?f=%5Ctt%20%5Cdisplaystyle%20%5BH%5E%2B%5D%3D2.10%5E%7B-4%7D%5Ctimes%5Cfrac%7B0.2%7D%7B0.8%5Ctimes%201%7D%5C%5C%5C%5C%28H%5E%2B%5D%3D5%5Ctimes%2010%5E%7B-5%7D%5C%5C%5C%5CpH%3D5-log~5%5C%5C%5C%5CpH%3D4.3)
Explanation:
The given data is as follows.
Energy of radiation absorbed by the electron in hydrogen atom = 
As energy is absorbed as a photon. Hence, frequency will be calculated will be as follows.
E = 
=
= 
or,
=
It is known that, 
= 
And, according to De-Broglie equation 
as, p = 
So, 
= 
Now, on squaring both the sides we get the following.
=
=

where, m = mass of electron
So, 
= 
=
J
Since, K.E = 
= 
= 
Thus, we can conclude that kinetic energy acquired by the electron in hydrogen atom is
.
The chemical formula for ammonia is NH3. So first, you need to find the molar mass of ammonia (how many grams in one mole).
N=14g
H3=3g
So one mole of NH3 is 17 grams, you can divide 82.9 grams by 17 grams to find the number of molecules. The answer should be 4.876 moles (molecules) of ammonia. Hope this helps!
Answer:
The average kinetic energy of the gas particles is greater in container B because it has a higher temperature.
Explanation:
<em>The correct option would be that the average kinetic energy of the gas particles is greater in container B because it has a higher temperature.</em>
<u>According to the kinetic theory of matter, the temperate of a substance is a measure of the average kinetic energy of the molecules of substance. In other words, the higher the temperature of a substance, the higher the average kinetic energy of the molecules of the substance.</u>
In the illustration, the gas in container B showed a higher temperature than that of container A as indicated on the thermometer, it thus means that the average kinetic energy of the molecules of gas B is higher than those of gas A.
Answer:
( About ) 0.03232 M
Explanation:
Based on the units for this reaction it should be a second order reaction, and hence you would apply the integrated rate law equation "1 / [X] = kt + 1 / [
]"
This formula would be true for the following information -
{
= the initial concentration of X, k = rate constant, [ X ] = the concentration after a certain time ( which is what you need to determine ), and t = time in minutes }
________
Therefore, all we have left to do is plug in the known values. The initial concentration of X is 0.467 at a time of 0 minutes, as you can tell from the given data. This is not relevant to the time needed in the formula, as we need to calculate the concentration of X after 18 minutes ( time = 18 minutes ). And of course k, the rate constant = 1.6
1 / [X] = ( 1.6 )( 18 minutes ) + 1 / ( 0.467 ) - Now let's solve for X
1 / [X] = 28.8 + 1 / ( 0.467 ),
1 / [X] = 28.8 + 2.1413...,
1 / [X] = 31,
[X] = 1 / 31 = ( About ) 0.03232 M
Now for this last bit here you probably are wondering why 1 / 31 is not 0.03232, rather 0.032258... Well, I did approximate one of the numbers along the way ( 2.1413... ) and took the precise value into account on my own and solved a bit more accurately. So that is your solution! The concentration of X after 18 minutes is about 0.03232 M