Answer:
k = 1.3 x 10⁻³ s⁻¹
Explanation:
For a first order reaction the integrated rate law is
Ln [A]t/[A]₀ = - kt
where [A] are the concentrations of acetaldehyde in this case, t is the time and k is the rate constant.
We are given the half life for the concentration of acetaldehyde to fall to one half its original value, thus
Ln [A]t/[A]₀ = Ln 1/2[A]₀/[A]₀= Ln 1/2 = - kt
- 0.693 = - k(530s) ⇒ k = 1.3 x 10⁻³ s⁻¹
<span>biological reactions that happen within cells while reducing the complex interactions found in a whole cell. Eukaryotic and prokaryotic cells have been used for creation of these simplified environments[1]. Subcellular fractions can be isolated by ultracentrifugation to provide molecular machinery that can be used in reactions in the absence of many of the other cellular components.
Cell-free biosystems can be prepared by mixing a number of purified enzymes and coenzymes. Cell-free biosystems are proposed as a new low-cost biomanufacturing platform compared to microbial fermentation used for thousands of years. Cell-free biosystems have several advantages suitable in industrial applications</span>
It matches the universal pH indicator and is indicating the proper pH
The problem talks about two questions and these are:
1. Metals are very good conductors of electricity and heat. Directing heat is easier. So let Marie heat the beads and also have heat another substance, for instance, water. If the beads heat quicker, then they are metals. Another test to conduct is called flame test. This test should give you a colored flame (blue/white for lead) the metal is lead if the reaction is: 2PbO+C ==> 2Pb +CO2
2. The beads are possibly to be lead since Ferrous(lead) oxide + carbon = carbon dioxide + lead