K:
m=155g
M=39g/mol
n = 155g / 39g/mol ≈ 3,97mol
KNO₃:
m=122g
M=101g/mol
n = 122g/101g/mol = 1,21mol
2K + 10KNO₃ ⇒ 6K₂O + N₂
2mol : 10mol
3,97mol : 1,21mol
limiting reagent
KNO₃ is limiting reagent
First, we determine the number of moles of gas present using the ideal gas equation.
PV = nRT
n = PV / RT
n = (1.4 * 226.4) / (0.082 *(27 + 273.15))
n = 12.88
Next, we use the given percentages to find the moles of helium present
Moles of helium = 0.655 * 12.88
Moles of helium = 8.44
Next, we use the formula:
Mass = moles * molar mass
Mass of helium = 8.44 * 4
Mass of helium = 33.76 grams
The force that holds protons and neutrons together is too strong to overcome.
<h3>Explanation</h3>
Consider the location of the particles in an atom.
- Electrons are found outside the nucleus.
- Protons and neutrons are found within the nucleus.
Protons carry positive charges and repel each other. The nucleus will break apart without the strong force that holds the protons and neutrons together. This force is much stronger than the attraction between the nucleus and the electrons. X-rays are energetic enough for removing electrons from an atom. However, you'll need a collider to remove protons from a stable nucleus. You could well have ionized the atom with all that energy.
Also, changing the number of protons per nucleus will convert the halogen atom to an atom of a different element. Rather than making the halogen negative, removing a proton will convert the halogen atom to the negative ion of a different element.
Answer:
-It is considered the modern atomic model.
-It describes the probable locations of the electrons
Explanation:
edge 2020
Answer:
Option C is correct.
The minimum amount of material that is needed for a fission reaction to keep going is called the critical mass.
Explanation:
Nuclear fission is the term used to describe the breakdown of the nucleus of a parent isotope into daughter nuclei.
Normally, the initial energy supplied for nuclear fission is the energy to initiate the first breakdown of the first set of radioactive isotopes that breakdown. Once that happens, the energy released from the first breakdown is enough to drive further breakdown of numerous isotopas in a manner that leads to more energy generation.
But, for this to be able to be sustained and not fizzle out, a particular amount of radioactive material to undergo nuclear fission must be present. This particular amount is termed 'critical mass'
Hope this Helps!!!