Answer:
the correct answer is (sp3d2) (d)
Explanation:
Answer:
<em>¹⁴₇N + ⁴₂He → ¹⁷ ₈O + ¹₁p</em>
Explanation:
¹⁴₇N represents the isotope of nitrogen-14, where the superscript 14 to the left of the chemical symbol of the element is the mass number (number of protons and neutrons) and the subscripst 7 is the atomic number (number of protons).
α is used to represent alpha particles. Alpha particles are nucleus of helium, ⁴₂He: mass number 4, atomic number 2,
The expression ¹⁴₇N + α represents a nuclear reaction: the nucleus of the isotope of nitrogen-14 (¹⁴₇N) is hit by α-particles ( ⁴₂He).
As result, the nucleus of ¹⁴₇N absorbs 1 proton, increasing its atomic number and mass number in 1, becoming ¹⁷ ₈O. In this process, also one proton is produced.
The total reaction is represented by ¹⁴₇N + ⁴₂He → ¹⁷ ₈O + ¹₁p, where you can verify the mass balance:
Mass numbers: 14 + 4 = 17 + 1 = 18.
Number of protons: 7 + 2 = 8 + 1 = 9.
Answer:
5.51mol/L
Explanation:
Number of moles = 1.35moles
Volume of the solution = 245mL = 245*10^-3L = 0.245L
Molarity of a solution is the defined as the number of moles of a solute dissolved in 1L of the solution.
1.35 moles = 0.245L
X moles = 1L
X = (1.35 * 1) / 0.245
X = 5.51mol/L
The molarity of the solution is 5.51mol/L
Answer:
(1) addition of HBr to 2-methyl-2-pentene
Explanation:
In this case, we will have the formation of a <u>carbocation</u> for each molecule. For molecule 1 we will have a <u>tertiary carbocation</u> and for molecule 2 we will have a <u>secondary carbocation</u>.
Therefore the <u>most stable carbocation</u> is the one produced by the 2-methyl-2-pentene. So, this molecule would react faster than 4-methyl-1-pentene. (See figure)