To determine the number of potassium laid side by side by a given distance, we simply divide the total distance to the diameter of each atom. The diameter is twice the radius of the atom. We calculate as follows:
number of atoms = 4770 / 231x10^-12 = 2.06x10^13 atoms
The correct answer is that 1.125 mol of NaOH is available, and 60.75 g of FeCl₃ can be consumed.
The mass of NaOH is 45 g
The molar mass of NaOH = 40 g/mol
The moles of NaOH = mass / molar mass
= 45 / 40
= 1.125
Thus, 1.125 mol NaOH is available
3 NaOH + FeCl₃ ⇒ Fe (OH)₃ + 3NaCl
3 mol of NaOH react with 1 mol of FeCl₃
1.125 moles of NaOH will react with x moles of FeCl₃
x = 1.125 / 3
x = 0.375 mol
0.375 mol FeCl₃ can take part in reaction
The molar mass of FeCl₃ is 162 g/mol
The mass of FeCl₃ = moles × mass
= 0.375 × 162
= 60.75 g
Thus, the amount of FeCl₃, which can be consumed is 60.75 g
Answer:
Option B
Explanation:
We will check the solubility graph for potassium nitrate, KNO
3. Based on the graph it can be said that the temperature of solution when 130 grams of KNO3 dissolves in 100 grams of water is near to 65 degree Celsius. Now if three grams of solute is increased then the temperature of the solution will increase by a degree or so and hence the most probable temperature would be 68 degree Celsius.
Hence, option B is correct
(46x8.0)+(47x7.8)+(48x73.4)+(49x5.5)+(50x5.3) = 4792.3
4792.3/100 = 47.923 this is the average atomic mass of Titanium
the actual yield is the amount of Na₂CO₃ formed after carrying out the experiment
theoretical yield is the amount of Na₂CO₃ that is expected to be formed from the calculations
we need to first find the theoretical yield
2Na₂O₂ + 2CO₂ ---> 2Na₂CO₃ + O₂
molar ratio of Na₂O₂ to Na₂CO₃ is 2:2
number of Na₂O₂ moles reacted is equal to the number of Na₂CO₃ moles formed
number of Na₂O₂ moles reacted is - 7.80 g / 78 g/mol = 0.10 mol
therefore number of Na₂CO₃ moles formed is - 0.10 mol
mass of Na₂CO₃ expected to be formed is - 0.10 mol x 106 g/mol = 10.6 g
therefore theoretical yield is 10.6 g
percent yield = actual yield / theoretical yield x 100%
81.0 % = actual yield / 10.6 g x 100 %
actual yield = 10.6 x 0.81
actual yield = 8.59 g
therefore actual yield is 8.59 g