Answer:
223.08 K
Explanation:
First we <u>convert 173.0 °C to K</u>:
- 173.0 °C + 273.16 = 446.16 K
With the absolute temperature we can use <em>Charles' law</em> to solve this problem:
Where in this case:
We <u>input the data</u>:
- 446.16 K * 50 L = T₂ * 100 L
And <u>solve for T₂</u>:
The wall would absorb extra heat during the day when the sun is out, then release the heat back into the room when the sun goes down.
Answer:
3.7 mol Al2O3 x 4 mol Al = 7.4 mol Al 2 mol Al2O3
Explanation:
Answer:
A Reaction
3. Pt(NO₃)₂(aq) + Cu(s)
4. Cr(s) + H₂SO₄(aq)
B Non Reaction
1. Mn(s) + Ca(NO₃)₂(aq)
2. KOH(aq) + Fe(s)
Y > Q > W > Z > X
Explanation:
The first question is whether a reaction will occur base on the chemical equation below.
1. Mn(s) + Ca(NO₃)₂(aq)
2. KOH(aq) + Fe(s)
3. Pt(NO₃)₂(aq) + Cu(s)
4. Cr(s) + H₂SO₄(aq)
Firstly, some element are more reactive than others , base on this criteria element can be arranged base on it reactivity .
1. Mn(s) + Ca(NO₃)₂(aq)
This reaction will not occur because Mn cannot displace Ca in it compound. Usually, more reactive element displaces less reactive element.
2. KOH(aq) + Fe(s)
The reaction will not occur since Iron is less reactive and lower in the reactivity series than potassium . So iron won't be able to displace potassium.
3. Pt(NO₃)₂(aq) + Cu(s)
Copper is more reactive than platinum so it will displace platinum easily . The reaction will definitely occur.
4. Cr(s) + H₂SO₄(aq)
Chromium is higher up in the reactivity series than hydrogen so, it will definitely displace hydrogen in it compound . The reaction will occur in this case.
Base on the reaction
Q + W+ Reaction occurs
Since the reaction occurred element Q is more reactive as it displace element w from it compound.
X + Z+ No reaction
No reaction occurred because element x is less reactive than z therefore, it cannot displace z from it compound.
W + Z+ Reaction occurs
Element w is more reactive than z as it displaces z form it compound.
Q+ + Y Reaction occurs
Element Y is more reactive than element Q as it displaces Q from it compound.
Therefore, the order of reactivity from the most reactive to the least reactive will be Y > Q > W > Z > X
We calculate for the number of moles of water given its mass by dividing the given mass by the molar mass.
n water = (36.04 g) / (18 g/mol)
n water = 2 mols
From the given balanced equation, every 6 moles of water produced will require 7 moles of oxygen.
n oxygen = (2 mols H2O) x (7 moles O2 / 6 moles H2O)
n oxygen = 2.33 mols O2