Metals. Titanium is very hard, gold is shiny, and copper is ductile(can be pulled into a wire without breaking). <span />
Answer:
88.8 minutes
Explanation:
Graham's law of diffusion relates rate of difusion by the following formula
Rate1 / rate 2 = √( Mass of argon / Mass of Neon)
Where rate = volume divided by time
Rate 1 = 10 ml / t1
Rate 2 = 10 ml / t2
Rate 1/ rate 2 = 10 ml / t1 ÷ 10 ml/ t2 = t2/ t1
t2/t1 = √(Mass of argon / mass of Neon) = √( 39.984/20.179)
125 / t1 = 1.4026
t1 = 125 / 1.4026 = 88.8 minutes
Answer:
The P-H bonds are more polar than the N-H bonds.
Explanation:
Phosphine is a polar molecule with non-polar bonds. The phosphorus atom is bonded to three hydrogen atoms and the phosphorus atom has a lone pair of electrons. Since hydrogen and phosphorus are equal in electronegativity, it implies that they attract the shared pairs of electrons the same amount,hence bonding electrons are shared equally making the covalent bonds non-polar.
The lone pair of electrons on phosphorus causes the molecule to be asymmetrical with respect to charge distribution this is why the molecule is polar even though the are non-polar bonds in the molecule.
Looking at the values of electro negativity stated in the question, one can easily see that the difference in electro negativity between nitrogen and hydrogen is 0.9 while the difference in electro negativity between phosphorus and hydrogen is zero. It is clear that NH3 is naturally more polar than PH3 since each individual N-H bond in NH3 is a polar bond while the individual P-H bonds in PH3 are nonpolar.
Answer:
Neither accurate nor precise
Explanation:
The values were not near or even the same as the accepted value thus making it neither accurate nor precise.
The way how <span>data is not actually obtained from the experiment represented in a line graph is defnitely that </span><span>a colored line with a broken line. It is a well known fact that to obtain the actual data from the experiment you there should be plotted points on the line. Hope it will help you! Regards.</span>