<span>There
are a number of ways to express concentration of a solution. This includes
molarity. Molarity is expressed as the number of moles of solute per volume of
the solution. We calculate the mass of the solute by first determining the number of moles needed. And by using the molar mass, we can convert it to units of mass.
Moles </span>(nh4)3po4 = 0.250 L (0.150 M) = 0.0375 moles (nh4)3po4
Mass = 0.0375 mol (nh4)3po4 (149.0867 g / mol) = 5.59 g (nh4)3po4
Answer:
<h2>
The equilibrium constant Kc for this reaction is 19.4760</h2>
Explanation:
The volume of vessel used=
ml
Initial moles of NO=
moles
Initial moles of H2=
moles
Concentration of NO at equilibrium=
M

Moles of NO at equilibrium= 
=
moles
2H2 (g) + 2NO(g) <—> 2H2O (g) + N2 (g)
<u>Initial</u> :1.3*10^-2 2.6*10^-2 0 0 moles
<u>Equilibrium</u>:1.3*10^-2 - x 2.6*10^-2-x x x/2 moles
∴
⇒
![Kc=\frac{[H2O]^2[N2]}{[H2]^2[NO]^2} (volume of vesselin litre)](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BH2O%5D%5E2%5BN2%5D%7D%7B%5BH2%5D%5E2%5BNO%5D%5E2%7D%20%28volume%20of%20vesselin%20litre%29)
<u>Equilibrium</u>:0.31*10^-2 1.61*10^-2 0.99*10^-2 0.495*10^-2 moles
⇒
⇒
I think the correct answer among the choices listed above is option D. Polar covalent bond is seen in molecules where <span>electrons are not shared equally between atoms. This makes the molecule to have a partially positive and partially negative sides.</span>
Answer:
a. electrophilic aromatic substitution
b. nucleophilic aromatic substitution
c. nucleophilic aromatic substitution
d. electrophilic aromatic substitution
e. nucleophilic aromatic substitution
f. electrophilic aromatic substitution
Explanation:
Electrophilic aromatic substitution is a type of chemical reaction where a hydrogen atom or a functional group that is attached to the aromatic ring is replaced by an electrophile. Electrophilic aromatic substitutions can be classified into five classes: 1-Halogenation: is the replacement of one or more hydrogen (H) atoms in an organic compound by a halogen such as, for example, bromine (bromination), chlorine (chlorination), etc; 2- Nitration: the replacement of H with a nitrate group (NO2); 3-Sulfonation: the replacement of H with a bisulfite (SO3H); 4-Friedel-CraftsAlkylation: the replacement of H with an alkyl group (R), and 5-Friedel-Crafts Acylation: the replacement of H with an acyl group (RCO). For example, the Benzene undergoes electrophilic substitution to produce a wide range of chemical compounds (chlorobenzene, nitrobenzene, benzene sulfonic acid, etc).
A nucleophilic aromatic substitution is a type of chemical reaction where an electron-rich nucleophile displaces a leaving group (for example, a halide on the aromatic ring). There are six types of nucleophilic substitution mechanisms: 1-the SNAr (addition-elimination) mechanism, whose name is due to the Hughes-Ingold symbol ''SN' and a unimolecular mechanism; 2-the SN1 reaction that produces diazonium salts 3-the benzyne mechanism that produce highly reactive species (including benzyne) derived from the aromatic ring by the replacement of two substituents; 4-the free radical SRN1 mechanism where a substituent on the aromatic ring is displaced by a nucleophile with the formation of intermediary free radical species; 5-the ANRORC (Addition of the Nucleophile, Ring Opening, and Ring Closure) mechanism, involved in reactions of metal amide nucleophiles and substituted pyrimidines; and 6-the Vicarious nucleophilic substitution, where a nucleophile displaces an H atom on the aromatic ring but without leaving groups (such as, for example, halogen substituents).