Answer:
1. 0.90 are the initial moles of X and Y
2. 0.60 moles are the moles of Y and Z after the reaction
3. 0.90 moles of X and 0.30 moles of Y
4. 3X + 1Y → 2Z
Explanation:
1. For the reaction, initial moles of X and Y are:
500mL = 0.500L × (1.8 moles / L) = 0.90 are the initial moles of X and Y
2. After the reaction. The total volume is 500mL + 500mL = 1L
Moles Y and Z = 1L × (0.60 moles / 1L) = 0.60 moles are the moles of Y and Z after the reaction
3. As there is no moles of X after the reaction, all X reacts, that is 0.90 moles of X. And moles of Y that reacts are 0.90 mol - 0.60mol = 0.30 moles of Y
4. That means 3 moles of X reacts per mole of Y 0.90/0.30 = 3. Also, 2 moles of Z are produced per mole of Y 0.60/0.30 = 2.
That means balanced equation is:
aX + bY → cZ
<h3>3X + 1Y → 2Z</h3>
<h3>
Answer:</h3>
28.96 kJ/°C
<h3>
Explanation:</h3>
We are given;
- Enthalpy change (ΔH) = −3226.7 kJ/mol
- The reaction is exothermic since the heat change is negative;
- Mass of benzoic acid = 3.1007 g
- Temperature change (21.84°C to 24.67°C) = 2.83°C
We are required to find the heat capacity of benzoic acid;
<h3>Step 1: Moles of benzoic acid </h3>
Moles = Mass ÷ molar mass
Molar mass of benzoic = 122.12 g/mol
Therefore;
Moles = 3.1007 g ÷ 122.12 g/mol
= 0.0254 moles
<h3>Step 2: Determine the specific heat capacity </h3>
Heat change for 1 mole = 3226.7 kJ
Moles of Benzoic acid = 0.0254 moles
But;
Specific heat capacity × ΔT = Moles × Heat change
cΔT = nΔH
Therefore;
Specific heat capacity,c = nΔH ÷ ΔT
= (3226.7 kJ × 0.0254 moles) ÷ 2.83°C
= 28.96 kJ/°C
Therefore, the specific heat capacity of benzoic acid is 28.96 kJ/°C
Answer:

Explanation:
Hello,
Based on the given chemical reaction, as 31.2 mL of hydrogen are yielded, one computes its moles via the ideal gas equation under the stated conditions as shown below:

Now, since the relationship between hydrogen and magnesium is 1 to 1, one computes its milligrams by following the shown below proportional factor development:

Best regards.
Answer: 625 kj/mol
Explanation:
As shown below this expression gives the activation energy of the reverse reaction:
EA reverse reaction = EA forward reaction + | enthalpy change |
1) The activation energy, EA is the difference between the potential energies of the reactants and the transition state:
EA = energy of the transition state - energy of the reactants.
2) The activation energy of the forward reaction given is:
EA = energy of the transition state - energy of [ NO2(g) + CO(g) ] = 75 kj/mol
3) The negative enthalpy change - 250 kj / mol for the forward reaction means that the products are below in the potential energy diagram, and that the potential energy of the products, [NO(g) + CO2(g) ] is equal to 375 kj / mol - 250 kj / mol = 125 kj/mol
4) For the reverse reaction the reactants are [NO(g) + CO2(g)], and the transition state is the same than that for the forward reaction.
5) The difference of energy between the transition state and the potential energy of [NO(g) + CO2(g) ] will be the absolute value of the change of enthalpy plus the activation energy for the forward reaction:
EA reverse reaction = EA forward reaction + | enthalpy change |
EA reverse reaction = 375 kj / mol + |-250 kj/mol | = 375 kj/mol + 250 kj/mol = 625 kj/mol.
And that is the answer, 625 kj/mol
Well ask yourself why don't we count it in moles and you should get your answer.