Answer:
1219.5 kj/mol
Explanation:
To reach this result, you must use the formula:
ΔHºrxn = Σn * (BE reactant) - Σn * (BE product)
ΔHºrxn = [1 * (BE C = C) + 2 * (BE C-H) + 5/2 * (BE O = O)] - [4 * (BE C = O) + 2 * (BE O-H).
The BE values are:
BE C = C: 839 kj / mol
BE C-H: 413 Kj / mol
BE O = O: 495 kj / mol
BE C = O = 799 Kj / mol
BE O-H = 463 kj / mol
Now you must replace the values in the above equation, the result of which will be:
ΔHºrxn = [1 * 839 + 2 * (413) + 5/2 * (495)] - [4 * (799) + 2 * (463) = 1219.5 kj/mol
It's 2, glass. Water, nitrogen, and sucrose don;t have a crystalline structure.
<span>08 moles Li3N * 1mole N2/2moles Li3N = 0.04 </span>
Answer:

Explanation:
Hello!
In this case, since the dissolution of copper (I) chloride is:

And its equilibrium expression is:
![Ksp=[Cu^+][Cl^-]](https://tex.z-dn.net/?f=Ksp%3D%5BCu%5E%2B%5D%5BCl%5E-%5D)
We can represent the molar solubility via the reaction extent as
, however, since there is 0.050 M KCl we immediately add such amount to the chloride ion concentration since KCl is readily ionized; therefore we write:

Thus, solving for
, we obtain:

By using the quadratic equation, we obtain:

Clearly, the solution is
because no negative results are
allowed. Therefore, the molar solubility is:

Best regards!