Answer is: the boiling point of the resulting solution of sucrose is 100.42°C.
m(H₂<span>O) = 15.2 g ÷ 1000 g/kg = 0.0152 kg.
</span>m(C₁₂H₂₂O₁₁<span>) = 4.27 g.
n</span>(C₁₂H₂₂O₁₁) = m(C₁₂H₂₂O₁₁) ÷ M(C₁₂H₂₂O₁₁).
n(C₁₂H₂₂O₁₁) = 4.27 g ÷ 342.3 g/mol.
n(C₁₂H₂₂O₁₁) = 0.0125 mol.
b(solution) = n(C₁₂H₂₂O₁₁) ÷ m(H₂O).
b(solution) = 0.0125 mol ÷ 0.0152 kg.
b(solution) = 0.82 m.
ΔT = b(solution) · Kb(H₂O).
ΔT = 0.82 m · 0.512°C/m.
ΔT = 0.42°C.
Tb = 100°C + 0.42°C = 100.42°C.
Explanation:
Soaps attach to both water and grease molecules.
The grease molecules are attracted more strongly towards each other as compared to water molecules. Also, water molecules are smaller in size hence, strong intermolecular force is required to break the hydrogen bonds of water molecule so that grease or oil molecules can enter the water molecule.
A soap molecule goes in between water and grease molecule and helps them to bind. The force for linkage between water and grease molecule through the soap molecule is weak london dispersion force.
The soap molecule has its salt end as ionic and water soluble. When grease or oil is added to the soap and water solution then the soap acts as an emulsifier. The soap forms miscelles of the non-polar tails and grease molecules are trapped between these miscelles. This miscelle is easily soluble in water hence, the grease is washed away.
Thus, it can be concluded that the nonpolar end of a soap molecule attaches itself to grease.
Answer:
The responding variable of this experement is the outcome and that would be that the one in lemon juice responded and the one in water didn't (the other one is the control). Thus the responding varible is the one in lemon juice.
Explanation:
Answer:

Explanation:
As energy is absorbed therefore it is an endothermic reaction. Hence energy value should be written in the product side with a negative sign.
Reaction: 
C balance: 
H and O balance: 
Here 2 moles of
react. So, energy absorbed during the reaction is
kJ or 46.6 kJ
Energy balance: 
Balanced thermochemical equation:

Answer:
The properties of liquids are intermediate between those of gases and solids, but are more similar to solids. In contrast to intramolecular forces, such as the covalent bonds that hold atoms together in molecules and polyatomic ions, intermolecular forces hold molecules together in a liquid or solid. Intermolecular forces are generally much weaker than covalent bonds. For example, it requires 927 kJ to overcome the intramolecular forces and break both O–H bonds in 1 mol of water, but it takes only about 41 kJ to overcome the intermolecular attractions and convert 1 mol of liquid water to water vapor at 100°C. (Despite this seemingly low value, the intermolecular forces in liquid water are among the strongest such forces known!) Given the large difference in the strengths of intra- and intermolecular forces, changes between the solid, liquid, and gaseous states almost invariably occur for molecular substances without breaking covalent bonds.
Explanation:
im not sure this is what your looking for but i found this