answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rama09 [41]
2 years ago
10

100 POINTS PLEASE HELP!! Honors Stoichiometry Activity Worksheet Instructions: In this laboratory activity, you will taste test

two samples of Just Lemons lemonade for taste quality. Then you will analyze lemonade production data for percent yield and excess ingredients. Complete each section of this worksheet, and submit it to your instructor for grading. Activity One: Tasting Excess and Limiting Ingredients Make lemonade samples using the sample 1 and sample 2 recipes. These represent two different batches of Just Lemons lemonade. Record your taste observations for each sample in the data chart. Sample 1: 1 cup water 2/3 cup sugar 1/2 cup lemon juice Sample 2: 1 cup water 1/2 cup sugar 1/4 cup lemon juice Taste Observations Sample 1: Sample 2: Activity Two: Just Lemons, Inc. Production Here's a one-batch sample of Just Lemons lemonade production. Determine the percent yield and amount of leftover ingredients for lemonade production and place your answers in the data chart. Hint: Complete stoichiometry calculations for each ingredient to determine the theoretical yield. Complete a limiting reactant-to-excess reactant calculation for both excess ingredients. Water Sugar Lemon Juice Lemonade Percent Yield Leftover Ingredients 946.36 g 196.86 g 193.37 g 719.84 g Just Lemons Lemonade Recipe Equation: 2 water + sugar + lemon juice = 4 lemonade Mole conversion factors: 1 mole of water = 1 cup = 236.59 g 1 mole of sugar = 1 cup = 198 g 1 mole of lemon juice = 1 cup = 229.96 g 1 mole of lemonade = 1 cup = 225.285 g Show your calculations below. Analysis Questions 1. Based on taste observations only, which ingredients were in excess in the lemonade samples in Activity One? 2. Based on the data in Activity Two, which excess ingredients are affecting the taste of the lemonade in the sample batch? 3. What can Just Lemons, Inc. do during production to reduce the amount of excess ingredients and improve the taste of their lemonade? 4. Try to reduce the amount of leftover ingredients by changing the amount of one, two, or all three starting ingredients. Show your stoichiometric calculations below. 5. During factory inspection, Just Lemons, Inc. discovered that a water valve to the lemonade mixing station was not functioning. Once they repair it, more water will enter the mixing station. From what you know about the limiting and excess ingredients for current lemonade production, what advice would you give engineers about the upcoming increase in water?

Chemistry
2 answers:
Shtirlitz [24]2 years ago
6 0

Answer:

2 water + sugar + lemon juice → 4 lemonade

Moles of water present in 946.36 g of water=\frac{946.36 g}{236.59 g/mol}=4 mol=

236.59g/mol

946.36g

=4mol

Moles of sugar present in 196.86 g of water=\frac{196.86 g}{225 g/mol}=0.8749 mol=

225g/mol

196.86g

=0.8749mol

Moles of lemon juice present in 193.37 g of water=\frac{193.37 g}{257.83 g/mol}=0.7499 mol=

257.83g/mol

193.37g

=0.7499mol

Moles of lemonade in 2050.25 g of water=\frac{2050.25 g}{719.42 g/mol}=2.8498 mol=

719.42g/mol

2050.25g

=2.8498mol

As we can see that number of moles of lemon juice are limited.

So, we will consider the reaction will complete in accordance with moles of lemon juice.

1 mole lemon juice reacts with 2 mol of water,then 0.7499 mol of lemon juice will react with:

\frac{2}{1}\times 0.7499 mol = 1.4998 mol

1

2

×0.7499mol=1.4998mol of water

Mass of water used = 1.4998 mol × 236.59 g/mol=354.8376 g

Water remained unused = 946.36 g - 354.8376 g =591.5223 g

1 mole lemon juice reacts with mol of sugar,then 0.7499 mol of lemon juice will react with:

\frac{1}{1}\times 0.7499 mol = 0.7499 mol

1

1

×0.7499mol=0.7499mol of water

Mass of sugar used = 0.7499 mol × 225 g/mol = 168.7275 g

Sugar remained unused = 196.86 g - 28.1325 g

1 mole of lemon juice gives 4 moles of lemonade.

Then 0.7499 mol of lemon juice will give:

\frac{4}{1}\times 0.7499 mol=2.996 mol

1

4

×0.7499mol=2.996mol of lemonade

Mass of lemonade obtained = 2.996 mol × 719.42 g/mol = 2157.9722 g

Theoretical yield of lemonade = 2157.9722 g

Experimental yield of lemonade = 2050.25 g

Percentage yield of lemonade:

\frac{\text{Experimental yield}}{\text{theoretical yield}}\times 100

theoretical yield

Experimental yield

×100

\frac{2050.25 g}{2157.9722 g}\times 100=95.00\%

2157.9722g

2050.25g

×100=95.00%

Sloan [31]2 years ago
5 0

Answer:

You pretty much just read what you wrote you make two different recipes of lemonade then find the different percentiles

You might be interested in
Which number is equal to -906,060?
Eva8 [605]

Answer:

it would be c

Explanation:

jshshsyyehdhdhdhdhdhhdhshdbdhdhfhdhdhdhd

7 0
2 years ago
Read 2 more answers
In which 1.0 gram sample are particles arranged in a rystal structure?
lilavasa [31]
The Options are as follow,

<span>                               (1) CaCl</span>₂<span> (s)     (3) CH</span>₃<span>OH (l)</span>

<span>                               (2) C</span>₂<span>H</span>₆<span> (g)      (4) Cal</span>₂<span> (aq)</span>

Answer:

            Option-1 is the correct answer.

Explanation:

                  As we know crystal formation is the property of solids. Therefore, in given options we are given with four different states of matter. 

                  Option A, CaCl₂ is in a solid state , so it can exist in crystal form.

                  Option 2, C₂H₆ (Ethane) is in gas form, so it cannot form crystals.

                  Option 3, CH₃OH (Methanol) is present in liquid form, so it fails to form crystals.

                  Option 4, CaI₂, it is dissolved in water, Hence, it is in aqueous state, Therefore it also lacks crystal structure.

5 0
2 years ago
6. Un volumen de 1.0 mL de agua de mar contiene casi 4 x 10-12 g de Au. El volumen total de agua en los océanos es de 1.5 x 1021
Aleks [24]

Answer:

The total amount of Au is $ 2.0\times10^{24}

Explanation:

Given that,

Mass of 1.0 ml of Au m=4\times10^{-2}\ g

Total volume of water in oceans V=1.5\times10^{21}\ L

We need to calculate the volume in ml

Using given volume

V=1.5\times10^{21}\times1000\ mL

V=1.5\times10^{24}\ mL

We need to calculate the total mass of Au  

Using given data

1\ ml\ volume = 4\times10^{-2}\ g

1.5\times10^{24}\ ml=4\times10^{-2}\times1.5\times10^{24}

So, The total mass of Au is 6\times10^{22}\ g

The mass will be in ounce,

Mass=0.035274\times6\times10^{22}

Mass=2.12\times10^{21}\ ounce

The total amount of the Au Will be

Total\ amount=2.12\times10^{21}\times948

Total\ amount=2.0\times10^{24}

Hence, The total amount of Au is $ 2.0\times10^{24}

3 0
2 years ago
Draw a second resonance structure for the following ion (be sure to include the charges and all lone pairs)... + ..N=N=N &lt;---
joja [24]

Answer:

Explanation:

Resonance structure occurs in an organic compound that undergoes resonance effects. This resonance effect is sometimes called the mesomeric effect helps to increases the stability of organic compounds that have alternating single bonds and double bonds.

The second resonance structure diagram for the ion given in the question can be found in the attached diagram below.

8 0
2 years ago
127) Thirty-six colonies grew in nutrient agar from 1.0 ml of undiluted sample in a standard plate count. How many cells were in
SIZIF [17.4K]

Answer:

36

Explanation:

Since the sample was undiluted the number of colonies is the number that grew on the nutrient agar which is 36 colonies. If it was diluted for example let say 0.1 ml from a dilution in which 1 ml of the sample was added to 9 ml of water, and it grew  colonies then  0.1 ml  yielded  6 colonies, 1 ml of the diluted sample will yield 60 colonies and 10 ml will have 600 colonies and therefore the 1 ml undiluted sample will have 600 colonies.

6 0
2 years ago
Other questions:
  • How many grams of iki would it take to obtain a 100 ml solution of 0.300 m iki? how many grams of iki would it take to create a
    13·1 answer
  • A crystallographer measures the horizontal spacing between molecules in a crystal. The spacing is
    8·2 answers
  • A particular radioactive isotope has a half-life of (2.50+a) hours. if you have (24.5+b) g of the isotope at 10:00 am, how much
    12·1 answer
  • Each of four groups of students determined and recorded the melting point of a solid compound. if the actual melting point is 11
    11·2 answers
  • !!15 points!!Which of the following phrases describes how the position of an electron
    14·2 answers
  • Your task is to measure the amount of energy evolved during the combustion of some hydrocarbon. Which of the following would be
    10·1 answer
  • Eugenol is a molecule that contains the phenolic functional group. Which option properly identifies the phenol in eugenol
    8·1 answer
  • A cylinder container can hold 2.45 L of water. It’s radius is 4.00 cm. What is the volume of it in cubic centimeters?
    7·1 answer
  • n the table below, write the density of each object. Then predict whether the object will float or sink in each of the fluids. W
    10·1 answer
  • Franklin was performing an experiment by combining hydrochloric acid and sodium hydroxide. He measured the mass of his reactant
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!