answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
faltersainse [42]
2 years ago
5

The table shows the amount of radioactive element remaining in a sample over a period of time.

Chemistry
1 answer:
MrRissso [65]2 years ago
6 0

Answer:

8,000 years.

Explanation:

  • It is known that the decay of a radioactive isotope isotope obeys first order kinetics.
  • Half-life time is the time needed for the reactants to be in its half concentration.
  • If reactant has initial concentration [A₀], after half-life time its concentration will be ([A₀]/2).
  • Also, it is clear that in first order decay the half-life time is independent of the initial concentration.

Part 1: What is the half-life of the element? Explain how you determined this.

  • The half-life of the element is 1,600 years.

Half-life time is the time needed for the reactants to be in its half concentration.

The sample stats with 56.0 g and reaches its half concentration (28.0 g) after 1,600 years.

<em>So, the half-life of the sample is 1,600 years.</em>

<em></em>

Part 2: How long would it take 312 g of the sample to decay to 9.75 grams? Show your work or explain your answer.

  • For, first order reactions:

<em>k = ln(2)/(t1/2) = 0.693/(t1/2).</em>

Where, k is the rate constant of the reaction.

t1/2 is the half-life of the reaction.

∴ k =0.693/(t1/2) = 0.693/(1,600 years) = 4.33 x 10⁻⁴ year⁻¹.

  • Also, we have the integral law of first order reaction:

<em>kt = ln([A₀]/[A]),</em>

where, k is the rate constant of the reaction (k = 4.33 x 10⁻⁴ year⁻¹).

t is the time of the reaction (t = ??? year).

[A₀] is the initial concentration of the sample ([A₀] = 312.0 g).

[A] is the remaining concentration of the sample ([A] = 9.75 g).

<em>∴ t = (1/k) ln([A₀]/[A])</em> = (1/4.33 x 10⁻⁴ year⁻¹) ln(312.0 g/9.75 g) = <em>8,000 years</em>.

You might be interested in
A student constructs an electrochemical cell. A diagram of the operating cell and the unbalanced ionic equation representing the
vivado [14]

Answer:

A voltaic cell

Explanation:

A voltaic cell is a device which converts chemical energy to electrical energy. The chemical reactions that take place inside the cell causes electrons to flow from anode to cathode hence, electricity is produced. A simple voltaic cell is made by placing two different metals in contact with an electrolyte separated by a salt bridge. The cathode is the negative electrode while the anode is the positive electrode. It is also called a galvanic cell.

In a voltaic cell having a copper/copper solution half cell, reduction occurs at the cathode. Hence, at the cathode copper II ions accept two electrons and become reduced to ordinary metallic copper. This causes the blue colour of the solution to become discharged (fade) as the cell continues to function.

4 0
1 year ago
How do acids and bases affect molecules such Proteins? ​
Taya2010 [7]

Answer:

Strong acids and bases both denature proteins by severing disulphide bonds and at higher temperatures, can break proteins into peptides, or even individual amino acids.

5 0
1 year ago
a) (1 point) Build anthracene, optimize its geometry and examine its structure. Describe its shape. b) (1 point) Measure the C-C
oksano4ka [1.4K]

Answer:

a) The structure of anthracene is planar with all the pi electrons delocalized in the structure to maintain aromaticity.

b) The C-C bond length in anthracene is about 140 pm with all the bond lengths being similar to each other.

The standard C-C bond length is 154 pm while standard C=C bond is about 134 pm. Therefore the bond length in anthracene is smaller than standard C-C bond length and longer than standard C=C bond length. This can be explained from the fact that the C-C bonds in anthracene has be mixed characteristics of single and double bond because of the delocalization of pi electrons over the whole structure. As a result, they are neither fully single nor fully double bond in nature. Hence the observed bond lengths.

c) This molecule is not flat. The N-atom is sp3 hybridized here and the H-atom attached to N will remain out of plane.

Explanation:

8 0
2 years ago
Silver chloride is formed by mixing silver nitrate and barium chloride solutions. What volume of 1.50 M barium chloride solution
konstantin123 [22]

Answer:

1.22 mL

Explanation:

Let's consider the following balanced reaction.

2 AgNO₃ + BaCl₂ ⇄ Ba(NO₃)₂ + 2 AgCl

The molar mass of silver chloride is 143.32 g/mol. The moles corresponding to 0.525 g are:

0.525 g × (1 mol/143.32 g) = 3.66 × 10⁻³ mol

The molar ratio of AgCl to BaCl₂ is 2:1. The moles  of BaCl₂ are 1/2 × 3.66 × 10⁻³ mol = 1.83 × 10⁻³ mol.

The volume of 1.50 M barium chloride containing 1.83 × 10⁻³ moles is:

1.83 × 10⁻³ mol × (1 L/1.50 mol) = 1.22 × 10⁻³ L = 1.22 mL

8 0
1 year ago
In a few sentences, describe the molecular polarity and the intermolecular forces present in ammonium lauryl sulfate.
Sergio [31]

Answer:

A polar molecule is a molecule in which one end of the molecule is slightly positive, while the other end is slightly negative. A diatomic molecule that consists of a polar covalent bond, such as HF, is a polar molecule. The two electrically charged regions on either end of the molecule are called poles, similar to a magnet having a north and a south pole. A molecule with two poles is called a dipole. Hydrogen fluoride is a dipole. A simplified way to depict polar molecules is pictured below When placed between oppositely charged plates, polar molecules orient themselves so that their positive ends are closer to the negative plate and their negative ends are closer to the positive plate

Experimental techniques involving electric fields can be used to determine if a certain substance is composed of polar molecules and to measure the degree of polarity.

For molecules with more than two atoms, the molecular geometry must also be taken into account when determining if the molecule is polar or nonpolar. is a comparison between carbon dioxide and water. Carbon dioxide (CO2) is a linear molecule. The oxygen atoms are more electronegative than the carbon atom, so there are two individual dipoles pointing outward from the C atom to each O atom. However, since the dipoles are of equal strength and are oriented in this way, they cancel each other out, and the overall molecular polarity of CO2 is zero.

Water is a bent molecule because of the two lone pairs on the central oxygen atom. The individual dipoles point from the H atoms toward the O atom. Because of the shape, the dipoles do not cancel each other out, and the water molecule is polar. In the figure, the net dipole is shown in blue and points upward.

Some other molecules are shown below (Figure below). Notice that a tetrahedral molecule such as CH4 is nonpolar. However, if one of the peripheral H atoms is replaced by another atom that has a different electronegativity, the molecule becomes polar. A trigonal planar molecule (BF3) may be nonpolar if all three peripheral atoms are the same, but a trigonal pyramidal molecule (NH3) is polar.

7 0
2 years ago
Other questions:
  • The Lewis structure for a chlorate ion, ClO3-, should show ____ single bond(s), ____ double bond(s), and ____ lone pair(s).
    15·2 answers
  • Balance the reactions which form ions. Choose "blank" if no other coefficient is needed. Writing the symbol implies "1."
    13·2 answers
  • Suppose that ammonia, applied to a field as a fertilizer, is washed into a farm pond containing 3.0 × 106 L of water. If the pH
    8·1 answer
  • Which term describes the difference in electrical charge across a membrane?
    8·1 answer
  • What is the total pressure (in atm) inside of a vessel containing N2 exerting a partial pressure of 0.256 atm, He exerting a par
    15·2 answers
  • ) Starting with 5.00 g barium chloride n hydrate yields 4.26 g of anhydrous barium chloride after heating. Determine the integer
    14·1 answer
  • A 25.0 g bold made of an alloy absorbed 250 J of heat as its temperature changed from 25.0 °C to 78.0 °C. What is the specific h
    11·1 answer
  • Arrange the steps of glycogen degradation in their proper order. Hormonal signals trigger glycogen breakdown. Glucose 6‑phosphat
    11·1 answer
  • A blue circle labeled proton and A overlaps a pink circle labeled electron and C. The overlap is labeled B. The Venn diagram com
    6·2 answers
  • One litre of hydrogen at STP weight 0.09gm of 2 litre of gas at STP weight 2.880gm. Calculate the vapour density and molecular w
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!