[ H₃O⁺] = 10 ^ - pH
[ H₃O⁺ ] = 10 ^ - 7.30
[ H₃O⁺ ] = 5.011 x 10⁻⁸ M
hope this helps!
Answer:
Empirical formula is Li₂CO₃.
Explanation:
Percentage of oxygen= 65.0%
Percentage of lithium = 18.7%
Percentage of carbon= 16.3%
Empirical formula = ?
Solution:
Number of gram atoms of C = 16.3/12 = 1.4
Number of gram atoms of Li = 18.7/6.94 = 2.7
Number of gram atoms of O = 65.0/ 16 = 4.1
Atomic ratio:
Li : C : O
2.7/1.4 : 1.4/1.4 : 4.1/1.4
2 : 1 : 3
Li : C : O = 2 : 1 : 3
Empirical formula is Li₂CO₃.
Answer:
4.34.
Explanation:
<em>∵ pH = pKa + log [salt]/[Acid]</em>
∴ pH = - log(Ka) + log [salt]/[Acid]
∴ pH = - log(6.8 x 10⁻⁵) + log(0.75)/(0.50)
<em>∴ pH = 4.167 + 0.176 = 4.343 ≅ 4.34.</em>
<em></em>
Answer:
A) ∆Suniv >0, ∆G<0, T∆Suniv >0.
Explanation:
The connection between entropy and the spontaneity of a reaction is expressed by the <u>second law of thermodynamics</u><u>: The entropy of the universe increases in a spontaneous process and remains unchanged in an equilibrium process</u>.
Mathematically, we can express the second law of thermodynamics as follows:
For a spontaneous process: ΔSuniv = ΔSsys + ΔSsurr > 0
Therefore, the second law of thermodynamics tells us that a spontaneous reaction increases the entropy of the universe; that is, ΔSuniv > 0.
If we want spontaneity expressed only in terms of the properties of the system (ΔHsys and ΔSsys), we use the following equation:
-TΔSuniv = ΔHsys - TΔSsys < 0
That means that T∆Suniv >0.
This equation says that for a process carried out at constant pressure and temperature T, if the changes in enthalpy and entropy of the system are such that <u>ΔHsys - TΔSsys is less than zero, the process must be spontaneous.</u>
Finally, if the change in free energy is less than zero (ΔG<0), the reaction is spontaneous in the forward direction.