No of moles of naoh = 2.40 ÷ (23+16+1) = 0.06mol
no of moles of na2co3 = 0.06 ÷ 2 = 0.03mol
mass of na2co3 = 0.03 × (23×2+12+16×3) = 0.03 × 106 = 3.18g
Answer:
Mole fraction N₂ = 0.336
Explanation:
Mole fraction of a gas can be determined in order to know the partial pressure of the gas, and the total pressure, in the mixture.
Total pressure in the mixture: Sum of partial pressure from all the gases
Total pressure = 183 mmHg + 443 mmHg + 693 mmHg =1319 mmHg
Mole fraction N₂ = Partial pressure N₂ / Total pressure
443 mmHg / 1319 mmHg = 0.336
Remember that mole fraction does not carry units
Answer:
bonding molecular orbital is lower in energy
antibonding molecular orbital is higher in energy
Explanation:
Electrons in bonding molecular orbitals help to hold the positively charged nuclei together, and they are always lower in energy than the original atomic orbitals.
Electrons in antibonding molecular orbitals are primarily located outside the internuclear region, leading to increased repulsions between the positively charged nuclei. They are always higher in energy than the parent atomic orbitals.
When two atoms of this element move towards each other, they will combine in a covalent bond to form a diatomic molecule.
Looking at the electron configuration of the atoms; 1s2 2s2 2p4, we can see that these are atoms of elements in group 16. The elements in group 16 has a general outer electronic configuration of ns2np4. They have a valency of 2.
When two atoms of this element approach each other, they will combine in a covalent bond to form a compound. If this element is depicted as X, the compound formed is X2.
Learn more: brainly.com/question/1527403