<u>Answer:</u> The new concentration of lemonade is 3.90 M
<u>Explanation:</u>
To calculate the number of moles for given molarity, we use the equation:
.....(1)
Molarity of lemonade solution = 2.66 M
Volume of solution = 473 mL
Putting values in equation 1, we get:

Now, calculating the new concentration of lemonade by using equation 1:
Moles of lemonade = 1.26 moles
Volume of solution = (473 - 150) mL = 323 mL
Putting values in equation 1, we get:

Hence, the new concentration of lemonade is 3.90 M
The equilibrium constant Kc for this reaction is calculated as follows
from the equation N2 + 3H2 =2 NH3
qc = (NH3)2/{(N2)(H2)^3}
Qc is therefore = ( 0.001)2 /{(0.1) (0.05)^3} = 0.08
Answer:

Explanation:
Hello,
In this case, we can compute the change in the solution enthalpy by using the following formula:

Whereas the mass of the solution is 350 g, the specific heat capacity is 4.184 J/g °C and the change in the temperature is 1.34 °C, therefore, we obtain:

It is important to notice that the mass is just 350 g that is the reacting amount and by means of the law of the conservation of mass, the total mass will remain constant, for that reason we compute the change in the enthalpy as shown above, which is positive due to the temperature raise.
Best regards.
Explanation:
Endothermic animals are also known as warm-blooded, they have the capacity to regulate their body temperature independent of the environment. They have mechanisms to compensate if heat loss exceeds heat generation (shivers) Or if heat generation exceeds the heat loss (panting, sweating).
On the other hand, ectothermal animals are known as cold blooded organisms and depend on external sources, like sunlight, to regulate their body temperature, reptiles are ectothermals.
To determine if the animal of interest is endo or ectothermal you’ll have to consider that is a reptile, you’ll also observe that it consumes less food and finally it’ll have more difficulties to adapt to sudden temperature changes.
I hope you find this information useful and interesting! Good luck!
Answer:
Mole fraction N₂ = 0.336
Explanation:
Mole fraction of a gas can be determined in order to know the partial pressure of the gas, and the total pressure, in the mixture.
Total pressure in the mixture: Sum of partial pressure from all the gases
Total pressure = 183 mmHg + 443 mmHg + 693 mmHg =1319 mmHg
Mole fraction N₂ = Partial pressure N₂ / Total pressure
443 mmHg / 1319 mmHg = 0.336
Remember that mole fraction does not carry units